1
|
Parker K, Bollis NE, Ryzhov V. Ion-molecule reactions of mass-selected ions. MASS SPECTROMETRY REVIEWS 2024; 43:47-89. [PMID: 36447431 DOI: 10.1002/mas.21819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gas-phase reactions of mass-selected ions with neutrals covers a very broad area of fundamental and applied mass spectrometry (MS). Oftentimes, ion-molecule reactions (IMR) can serve as a viable alternative to collision-induced dissociation and other ion dissociation techniques when using tandem MS. This review focuses on the literature pertaining applications of IMR since 2013. During the past decade considerable efforts have been made in analytical applications of IMR, including advances in one of the major techniques for characterization of unsaturated fatty acids and lipids, ozone-induced dissociation, and the development of a new technique for sequencing of large ions, hydrogen atom attachment/abstraction dissociation. Many advances have also been made in identifying gas-phase chemistry specific to a functional group in organic and biological compounds, which are useful in structure elucidation of analytes and differentiation of isomers/isobars. With "soft" ionization techniques like electrospray ionization having become mainstream for quite some time now, the efforts in the area of metal ion catalysis have firmly moved into exploring chemistry of ligated metal complexes in their "natural" oxidation states allowing to model individual steps of mechanisms in homogeneous catalysis, especially in combination with high-level DFT calculations. Finally, IMR continue to contribute to the body of knowledge in the area of chemistry of interstellar processes.
Collapse
Affiliation(s)
- Kevin Parker
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Nicholas E Bollis
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| |
Collapse
|
2
|
Zhang M, Li X, Yang Y, Li T, Luo H, Wen L, Qin L. Multilayer Self-Assemblies for Fabricating Graphene-Supported Single-Atomic Metal via Microwave-Assisted Emulsion Micelle. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201291. [PMID: 35560977 DOI: 10.1002/smll.202201291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Inspired by molecular self-assemblies in nature, this article reports a versatile strategy for confined encapsulation of single-atomic metal into high-quality rGO nanosheets by the microwave-assisted emulsion micelle method. Multilayer self-assembly of organometallics-surfactants micelles into the interlayer of nanosheets can not only promote microwave exfoliation and reduction of GO but also precisely control loading and distribution of single-metal atoms. With this synthetic strategy, the simultaneous trinity of exfoliation, reduction, and composition are achieved for 1 min. Experimental results and density functional theory calculations demonstrate that graphene-supported FeN4 O2 sites exhibit optimal binding energy toward superior selective adsorption (adsorption amount of 1975.6 mg g-1 with separation efficiency of 97.6%) and electrocatalytic oxidation (TOFs as high as 1.31 min-1 ). This work provides a simple and efficient avenue for the large-scale preparation of single-atomic metal composites in environmental and energy fields.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Center for Membrane Separation and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaohui Li
- Center for Membrane Separation and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yihui Yang
- Center for Membrane Separation and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Tiejun Li
- State Key Laboratory of Sustainable Utilization Technology Research of Marine Fishery Resources, Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, P. R. China
| | - Huili Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Luhong Wen
- Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
| | - Lei Qin
- Center for Membrane Separation and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
3
|
Deng Y, Guo Y, Jia Z, Liu JC, Guo J, Cai X, Dong C, Wang M, Li C, Diao J, Jiang Z, Xie J, Wang N, Xiao H, Xu B, Zhang H, Liu H, Li J, Ma D. Few-Atom Pt Ensembles Enable Efficient Catalytic Cyclohexane Dehydrogenation for Hydrogen Production. J Am Chem Soc 2022; 144:3535-3542. [PMID: 35107999 DOI: 10.1021/jacs.1c12261] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Identification of catalytic active sites is pivotal in the design of highly effective heterogeneous metal catalysts, especially for structure-sensitive reactions. Downsizing the dimension of the metal species on the catalyst increases the dispersion, which is maximized when the metal exists as single atoms, namely, single-atom catalysts (SACs). SACs have been reported to be efficient for various catalytic reactions. We show here that the Pt SACs, although with the highest metal atom utilization efficiency, are totally inactive in the cyclohexane (C6H12) dehydrogenation reaction, an important reaction that could enable efficient hydrogen transportation. Instead, catalysts enriched with fully exposed few-atom Pt ensembles, with a Pt-Pt coordination number of around 2, achieve the optimal catalytic performance. The superior performance of a fully exposed few-atom ensemble catalyst is attributed to its high d-band center, multiple neighboring metal sites, and weak binding of the product.
Collapse
Affiliation(s)
- Yuchen Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Guo
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhimin Jia
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.,Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jin-Cheng Liu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jinqiu Guo
- School of Materials Science and Engineering & National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| | - Xiangbin Cai
- Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chunyang Dong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chengyu Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiangyong Diao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zheng Jiang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jinglin Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ning Wang
- Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hai Xiao
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Bingjun Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hongbo Zhang
- School of Materials Science and Engineering & National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| | - Hongyang Liu
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.,Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Ji G, Zhao L, Wei J, Cai J, He C, Du Z, Cai W, Duan C. A Metal–Organic Framework as a Multiphoton Excitation Regulator for the Activation of Inert C(sp
3
)−H Bonds and Oxygen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guanfeng Ji
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Jianwei Wei
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Junkai Cai
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Cheng He
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Zenggang Du
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Wei Cai
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| |
Collapse
|
5
|
Ji G, Zhao L, Wei J, Cai J, He C, Du Z, Cai W, Duan C. A Metal-Organic Framework as a Multiphoton Excitation Regulator for the Activation of Inert C(sp 3 )-H Bonds and Oxygen. Angew Chem Int Ed Engl 2021; 61:e202114490. [PMID: 34747102 DOI: 10.1002/anie.202114490] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/07/2022]
Abstract
The activation and oxidization of inert C(sp3 )-H bonds into value-added chemicals affords attractively economic and ecological benefits as well as central challenge in modern chemistry. Inspired by the natural enzymatic transformation, herein, we report a new multiphoton excitation approach to activate the inert C(sp3 )-H bonds and oxygen by integrating the photoinduced electron transfer (PET), ligand-to-metal charge transfer (LMCT) and hydrogen atom transfer (HAT) events together into one metal-organic framework. The well-modified nicotinamide adenine dinucleotide (NAD+ ) mimics oxidized CeIII -OEt moieties to generate CeIV -OEt chromophore and its reduced state mimics NAD. via PET. The in situ formed CeIV -OEt moiety triggers a LMCT excitation to form the alkoxy radical EtO. , abstracts a hydrogen atom from the C(sp3 )-H bond, accompanying the recovery of CeIII -OEt and the formation of alkyl radicals. The formed NAD. activates oxygen to regenerate the NAD+ for next recycle, wherein, the activated oxygen species interacts with the intermediates for the oxidization functionalization, paving a catalytic avenue for developing scalable and sustainable synthetic strategy.
Collapse
Affiliation(s)
- Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jianwei Wei
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Junkai Cai
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Zenggang Du
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wei Cai
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
6
|
Parker K, Weragoda GK, Mohr A, Canty AJ, O’Hair RAJ, Ryzhov V. Cracking and Dehydrogenation of Cyclohexane by [(phen)M(X)] + (M = Ni, Pd, Pt; X = H, CH 3) in the Gas Phase. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kevin Parker
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Geethika K. Weragoda
- School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia
| | - Alyssa Mohr
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Allan J. Canty
- School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Richard A. J. O’Hair
- School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| |
Collapse
|
7
|
Huang L, Wu K, He Q, Xiong C, Gan T, He X, Ji H. Quasi‐continuous
synthesis of iron single atom catalysts via a microcapsule pyrolysis strategy. AIChE J 2021. [DOI: 10.1002/aic.17197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Liyun Huang
- Fine Chemical Industry Research Institute, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Kui Wu
- Fine Chemical Industry Research Institute, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Qian He
- Fine Chemical Industry Research Institute, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Tao Gan
- Fine Chemical Industry Research Institute, School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Xiaohui He
- Fine Chemical Industry Research Institute, School of Chemistry Sun Yat‐sen University Guangzhou China
- Huizhou Research Institute of Sun Yat‐sen University Huizhou China
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry Sun Yat‐sen University Guangzhou China
- Huizhou Research Institute of Sun Yat‐sen University Huizhou China
- School of Chemical Engineering Guangdong University of Petrochemical Technology Maoming China
| |
Collapse
|