1
|
Zhang Y, Chen L, Jia Y. Total Synthesis of Pallamolides A-E. Angew Chem Int Ed Engl 2024; 63:e202319127. [PMID: 38504637 DOI: 10.1002/anie.202319127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
We have achieved the first total synthesis of pallamolides A-E. Of these compounds, pallamolides B-E possess intriguing tetracyclic skeletons with novel intramolecular transesterifications. Key transformations include highly diastereoselective sequential Michael addition reactions to construct the bicyclo[2.2.2]octane core with the simultaneous generation of two quaternary carbon centers, a one-pot SmI2-mediated intramolecular ketyl-enoate cyclization/ketone reduction to generate the key oxabicyclo[3.3.1]nonane moiety, and an acid-mediated deprotection/oxa-Michael addition/β-hydroxy elimination cascade sequence to assemble the tetracyclic pallamolide skeleton. Kinetic resolution of ketone 14 through Corey-Bakshi-Shibata reduction enabled the asymmetric synthesis of pallamolides A-E.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing, 100191, P. R. China
| | - Lijun Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing, 100191, P. R. China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing, 100191, P. R. China
| |
Collapse
|
2
|
Imamura Y, Takaoka K, Komori Y, Nagatomo M, Inoue M. Total Synthesis of Taxol Enabled by Inter- and Intramolecular Radical Coupling Reactions. Angew Chem Int Ed Engl 2023; 62:e202219114. [PMID: 36646637 DOI: 10.1002/anie.202219114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Taxol is a clinically used drug for the treatment of various types of cancers. Its 6/8/6/4-membered ring (ABCD-ring) system is substituted by eight oxygen functional groups and flanked by four acyl groups, including a β-amino acid side chain. Here we report a 34-step total synthesis of this unusually oxygenated and intricately fused structure. Inter- and intramolecular radical coupling reactions connected the A- and C-ring fragments and cyclized the B-ring, respectively. Functional groups of the A- and C-rings were then efficiently decorated by employing newly developed chemo-, regio-, and stereoselective reactions. Finally, construction of the D-ring and conjugation with the β-amino acid delivered taxol. The powerful coupling reactions and functional group manipulations implemented in the present synthesis provide new valuable information for designing multistep target-oriented syntheses of diverse bioactive natural products.
Collapse
Affiliation(s)
- Yusuke Imamura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kyohei Takaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuma Komori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
3
|
Chen Z, Zhao K, Jia Y. Bioinspired Total Synthesis of (+)-Euphorikanin A. Angew Chem Int Ed Engl 2022; 61:e202200576. [PMID: 35165997 DOI: 10.1002/anie.202200576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 11/12/2022]
Abstract
We have achieved a bioinspired total synthesis of (+)-euphorikanin A, which possesses an intriguing and complex 5/6/7/3-fused tetracyclic skeleton bearing a bridged [3.2.1]-γ-lactone moiety. Key transformations include stereoselective alkylation and aldol condensation to install the main stereocenters, an intramolecular nucleophile-catalyzed aldol lactonization of carboxylic acid-ketone to assemble the five-membered ring, a McMurry coupling to construct the seven-membered ring, and a biomimetic benzilic acid type rearrangement to form the bridged [3.2.1]-γ-lactone moiety.
Collapse
Affiliation(s)
- Zhuang Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Kuan Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| |
Collapse
|
4
|
Chen Z, Zhao K, Jia Y. Bioinspired Total Synthesis of (+)‐Euphorikanin A. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhuang Chen
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences and Chemical Biology Center Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Kuan Zhao
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences and Chemical Biology Center Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences and Chemical Biology Center Peking University Xue Yuan Rd. 38 Beijing 100191 China
| |
Collapse
|
5
|
Chen M, Dong G. Platinum-Catalyzed α,β-Desaturation of Cyclic Ketones through Direct Metal-Enolate Formation. Angew Chem Int Ed Engl 2021; 60:7956-7961. [PMID: 33460511 DOI: 10.1002/anie.202013628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/11/2020] [Indexed: 12/14/2022]
Abstract
The development of a platinum-catalyzed desaturation of cyclic ketones to their conjugated α,β-unsaturated counterparts is reported in this full article. A unique diene-platinum complex was identified to be an efficient catalyst, which enables direct metal-enolate formation. The reaction operates under mild conditions without using strong bases or acids. Good to excellent yields can be achieved for diverse and complex scaffolds. A wide range of functional groups, including those sensitive to acids, bases/nucleophiles, or palladium species, are tolerated, which represents a distinct feature from other known desaturation methods. Mechanistically, this platinum catalysis exhibits a fast and reversible α-deprotonation followed by a rate-determining β-hydrogen elimination process, which is different from the prior Pd-catalyzed desaturation method. Promising preliminary enantioselective desaturation using a chiral-diene-platinum complex has also been obtained.
Collapse
Affiliation(s)
- Ming Chen
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
6
|
Chen M, Dong G. Platinum‐Catalyzed α,β‐Desaturation of Cyclic Ketones through Direct Metal–Enolate Formation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ming Chen
- Department of Chemistry University of Chicago Chicago IL 60637 USA
| | - Guangbin Dong
- Department of Chemistry University of Chicago Chicago IL 60637 USA
| |
Collapse
|
7
|
Li H, Zhang J, She X. The Total Synthesis of Diquinane-Containing Natural Products. Chemistry 2021; 27:4839-4858. [PMID: 32955141 DOI: 10.1002/chem.202003741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Indexed: 12/18/2022]
Abstract
Diquinane or bicyclo[3.3.0]octane is a conspicuous structural unit existing in the carbo-frameworks of a wide range of natural products such as alkaloids and terpenoids. These diquinane-containing molecules not merely exhibit intriguing architectures, but also showcase a broad spectrum of significant bioactivities, which draw widespread attention from the global synthetic community. During the past decade, with an aim to accomplish the total syntheses of such specified cornucopias of natural products, a variety of elegant strategies for construction of the diquinane ring system have been disclosed. In this Minireview, the achievements on this subject in the timeline from 2010 to June 2020 are demonstrated and it is discussed how the diquinane unit is strategically forged in the context of the specific target structure. In addition, impacts of the selected works to the field of natural product total synthesis is highlighted and the particular outlook of diquinane-containing natural product synthesis is provided.
Collapse
Affiliation(s)
- Huilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, Gansu, P. R. China
| | - Jing Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, Gansu, P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, Gansu, P. R. China
| |
Collapse
|
8
|
Grant PS, Brimble MA. seco-Labdanes: A Study of Terpenoid Structural Diversity Resulting from Biosynthetic C-C Bond Cleavage. Chemistry 2021; 27:6367-6389. [PMID: 33289161 DOI: 10.1002/chem.202004574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 11/08/2022]
Abstract
The cleavage of a C-C bond is a complexity generating process, which complements oxidation and cyclisation events in the biosynthesis of terpenoids. This process leads to increased structural diversity in a cluster of related secondary metabolites by modification of the parent carbocyclic core. In this review, we highlight the diversifying effect of C-C bond cleavage by examining the literature related to seco-labdanes-a class of diterpenoids arising from such C-C bond cleavage events.
Collapse
Affiliation(s)
- Phillip S Grant
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
9
|
Rodygin KS, Lotsman KA, Ananikov VP. Calcium Carbide Looping System for Acetaldehyde Manufacturing from Virtually any Carbon Source. CHEMSUSCHEM 2020; 13:3679-3685. [PMID: 32338832 DOI: 10.1002/cssc.202000760] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/24/2020] [Indexed: 06/11/2023]
Abstract
A vinylation/devinylation looping system for acetaldehyde manufacturing was evaluated. Vinylation of iso-butanol with calcium carbide under solvent-free conditions was combined with hydrolysis of the resulting iso-butyl vinyl ether under slightly acidic conditions. Acetaldehyde produced by hydrolysis was collected from the reaction mixture by simple distillation, and the remaining alcohol was redirected to the vinylation step. All the inorganic co-reagents can be looped as well, and the full sequence is totally sustainable. A complete acetaldehyde manufacturing cycle was proposed on the basis of the developed procedure. The cycle was fed with calcium carbide and produced the aldehyde as a single product in a total preparative yield of 97 %. No solvents, hydrocarbons, or metal catalysts were needed to maintain the cycle. As calcium carbide in principle can be synthesized from virtually any source of carbon, the developed technology represents an excellent example of biomass and waste conversion into a valuable industrial product.
Collapse
Affiliation(s)
- Konstantin S Rodygin
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof, 198504, Russia
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, Moscow, 119991, Russia
| | - Kristina A Lotsman
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof, 198504, Russia
| | - Valentine P Ananikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr. 26, Stary Petergof, 198504, Russia
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, Moscow, 119991, Russia
| |
Collapse
|
10
|
Guo J, Li B, Ma W, Pitchakuntla M, Jia Y. Total Synthesis of (−)‐Glaucocalyxin A. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jiuzhou Guo
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Bo Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Weihao Ma
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Mallesham Pitchakuntla
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| |
Collapse
|
11
|
Guo J, Li B, Ma W, Pitchakuntla M, Jia Y. Total Synthesis of (−)‐Glaucocalyxin A. Angew Chem Int Ed Engl 2020; 59:15195-15198. [DOI: 10.1002/anie.202005932] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/17/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Jiuzhou Guo
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Bo Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Weihao Ma
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Mallesham Pitchakuntla
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| |
Collapse
|