1
|
Saeedi Garakani S, Pang K, Tahavori E, Pradip Nawadkar A, Uguz Neli Ö, Yuan J. Poly(ionic liquid)/Wood Composite-Derived B/N-Codoped Porous Carbons Possessing Peroxidase-like Catalytic Activity. ACS OMEGA 2024; 9:39170-39179. [PMID: 39310210 PMCID: PMC11411521 DOI: 10.1021/acsomega.4c06102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024]
Abstract
The pursuit of efficient and cost-effective metal-free heterogeneous catalytic systems remains a challenging task in materials research. Heteroatom-doped carbonaceous materials are increasingly recognized as powerful metal-free catalysts, often demonstrating catalytic performance comparable to or even surpassing metal-based alternatives. This is attributed to their tunable physicochemical properties, tailorable structural features, and environmentally friendly profile. In a straightforward single-step synthetic approach, we utilized wood as an eco-friendly and renewable carbon source, in conjunction with a poly(ionic liquid) as a heteroatom source and pore-making agent. The combination of both biobased and synthetic polymers in this method yielded sustainable, high-performance catalysts characterized by enhanced stability and reusability. The inclusion of sacrificial pore-inducing templates resulted in the formation of abundant defects serving as catalytically active sites, while codoping with boron and nitrogen further enhanced these sites, significantly impacting catalytic activities, as established by peroxidase-like activity in this study. The optimized codoped porous carbon membrane exhibited excellent peroxidase-type activity and catalyzed the oxidation reaction of 3,3',5,5'-tetramethylbenzidine by hydrogen peroxide. This high activity was largely due to the dual heteroatom codoping effect and the mixed micro/macroporous structure of the membrane. Our work presents a versatile and eco-friendly method for fabricating hierarchically porous B/N codoped carbon membranes, offering a manageable, convenient, and recyclable biomimetic artificial enzyme with superior catalytic capabilities. This work introduces a practical and robust colorimetric method that can be used in healthcare and environmental rehabilitation.
Collapse
Affiliation(s)
- Sadaf Saeedi Garakani
- Department of Materials &
Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Kanglei Pang
- Department of Materials &
Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Elnaz Tahavori
- Department of Materials &
Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Anuja Pradip Nawadkar
- Department of Materials &
Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Özlem Uguz Neli
- Department of Materials &
Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Jiayin Yuan
- Department of Materials &
Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
2
|
Sun Z, Zhang H, Cao L, Liu X, Wu D, Shen X, Zhang X, Chen Z, Ru S, Zhu X, Xia Z, Luo Q, Xu F, Yao T. Understanding Synergistic Catalysis on Cu-Se Dual Atom Sites via Operando X-ray Absorption Spectroscopy in Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2023; 62:e202217719. [PMID: 36692894 DOI: 10.1002/anie.202217719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 01/25/2023]
Abstract
The construction and understanding of synergy in well-defined dual-atom active sites is an available avenue to promote multistep tandem catalytic reactions. Herein, we construct a dual-hetero-atom catalyst that comprises adjacent Cu-N4 and Se-C3 active sites for efficient oxygen reduction reaction (ORR) activity. Operando X-ray absorption spectroscopy coupled with theoretical calculations provide in-depth insights into this dual-atom synergy mechanism for ORR under realistic device operation conditions. The heteroatom Se modulator can efficiently polarize the charge distribution around symmetrical Cu-N4 moieties, and serve as synergistic site to facilitate the second oxygen reduction step simultaneously, in which the key OOH*-(Cu1 -N4 ) transforms to O*-(Se1 -C2 ) intermediate on the dual-atom sites. Therefore, this designed catalyst achieves satisfied alkaline ORR activity with a half-wave potential of 0.905 V vs. RHE and a maximum power density of 206.5 mW cm-2 in Zn-air battery.
Collapse
Affiliation(s)
- Zhiguo Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Huijuan Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Linlin Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Dan Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xinyi Shen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xue Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Zihang Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Sen Ru
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Xiangyu Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zhiyuan Xia
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Faqiang Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| |
Collapse
|
3
|
Wang T, Miao L, Zheng S, Qin H, Cao X, Yang L, Jiao L. Interfacial Engineering of Ni 3N/Mo 2N Heterojunctions for Urea-Assisted Hydrogen Evolution Reaction. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Tongzhou Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Licheng Miao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Siyu Zheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hongye Qin
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lei Yang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
4
|
Wang T, Cao X, Jiao L. Progress in Hydrogen Production Coupled with Electrochemical Oxidation of Small Molecules. Angew Chem Int Ed Engl 2022; 61:e202213328. [PMID: 36200263 DOI: 10.1002/anie.202213328] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 11/05/2022]
Abstract
The electrochemical oxidation of small molecules to generate value-added products has gained enormous interest in recent years because of the advantages of benign operation conditions, high conversion efficiency and selectivity, the absence of external oxidizing agents, and eco-friendliness. Coupling the electrochemical oxidation of small molecules to replace oxygen evolution reaction (OER) at the anode and the hydrogen evolution reaction (HER) at the cathode in an electrolyzer would simultaneously realize the generation of high-value chemicals or pollutant degradation and the highly efficient production of hydrogen. This Minireview presents an introduction on small-molecule choice and design strategies of electrocatalysts as well as recent breakthroughs achieved in the highly efficient production of hydrogen. Finally, challenges and future orientations are highlighted.
Collapse
Affiliation(s)
- Tongzhou Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
5
|
Dang-Bao T, Ho TGT, Do BL, Phung Anh N, Phan TDT, Tran TBY, Duong NL, Hong Phuong P, Nguyen T. Green Orange Peel-Mediated Bioinspired Synthesis of Nanoselenium and Its Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus. ACS OMEGA 2022; 7:36037-36046. [PMID: 36249379 PMCID: PMC9558707 DOI: 10.1021/acsomega.2c05469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
In this study, green orange peel (GOP) was feasibly evidenced in preparing selenium nanoparticles (SeNPs). Acting as reducing agents, polyphenolic compounds were extracted from GOP at the optimal extraction conditions (at 70 °C for 1.5 h, mass ratio of dried orange peel/distilled water of 5/100). The formation of SeNPs was observed at the wavelength range of 250-300 nm by ultraviolet-visible spectroscopy (UV-vis), and their highest yield could be reached at the following conditions: volume ratio of extract/selenious acid solution (V Ext/V Se) of 40/10, synthesis duration of 4 h, selenious acid concentration (C Se) of 80 mM, and reaction temperature of 120 °C. The highly crystalline structure of SeNPs in the hexagonal phase was characterized by powder X-ray diffraction (XRD) with a lattice parameter of 4.3 Å; meanwhile, their spheres with an average crystal size of 18.3 nm were estimated by high-resolution transmission electron microscope (HR-TEM). The rationale of bioreducing agents extracted from green orange peel for the formation of SeNPs was also recognized by Fourier-transform infrared spectroscopy (FT-IR). The antibacterial investigation of the SeNP sample was assessed against antibiotic-resistant bacteria, typically methicillin-resistant Staphylococcus aureus (MRSA), by executing the zone of inhibition and the minimum inhibitory concentration (MIC) tests. The SeNP sample demonstrated excellent antibacterial activity with an average diameter of inhibition zones of 20.0 ± 0.7 mm and an MIC of 4.94 μg/L. A comparison of the physicochemical properties of SeNPs synthesized from GOP extract by the hydrothermal method with SeNP products from other green reducing agents and other methods as well as its antibacterial activity compared with other nanoparticles and some antibiotics was conducted to highlight the superiority of GOP-mediated green-synthesized SeNPs.
Collapse
Affiliation(s)
- Trung Dang-Bao
- Ho
Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., District 10, Ho Chi Minh City700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City700000, Vietnam
| | - Thanh Gia-Thien Ho
- Institute
of Chemical Technology-VAST, 01A TL29 Str., Thanh Loc Ward, District 12, Ho Chi Minh City700000, Vietnam
| | - Ba Long Do
- Institute
of Chemical Technology-VAST, 01A TL29 Str., Thanh Loc Ward, District 12, Ho Chi Minh City700000, Vietnam
| | - Nguyen Phung Anh
- Institute
of Chemical Technology-VAST, 01A TL29 Str., Thanh Loc Ward, District 12, Ho Chi Minh City700000, Vietnam
| | - Thi Diem Trinh Phan
- Ho
Chi Minh City Open University, 97 Vo Van Tan Str., District 3, Ho Chi Minh City700000, Vietnam
| | - Thi Bao Yen Tran
- Ho
Chi Minh City Open University, 97 Vo Van Tan Str., District 3, Ho Chi Minh City700000, Vietnam
| | - Nhat Linh Duong
- Ho
Chi Minh City Open University, 97 Vo Van Tan Str., District 3, Ho Chi Minh City700000, Vietnam
| | - Phan Hong Phuong
- Ho
Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., District 10, Ho Chi Minh City700000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City700000, Vietnam
| | - Tri Nguyen
- Institute
of Chemical Technology-VAST, 01A TL29 Str., Thanh Loc Ward, District 12, Ho Chi Minh City700000, Vietnam
- Ho
Chi Minh City Open University, 97 Vo Van Tan Str., District 3, Ho Chi Minh City700000, Vietnam
| |
Collapse
|
6
|
Burshtein TY, Tamakuwala K, Sananis M, Grinberg I, Samala NR, Eisenberg D. Understanding hydrazine oxidation electrocatalysis on undoped carbon. Phys Chem Chem Phys 2022; 24:9897-9903. [PMID: 35416204 DOI: 10.1039/d2cp00213b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbons are ubiquitous electrocatalytic supports for various energy-related transformations, especially in fuel cells. Doped carbons such as Fe-N-C materials are particularly active towards the oxidation of hydrazine, an alternative fuel and hydrogen carrier. However, there is little discussion of the electrocatalytic role of the most abundant component - the carbon matrix - towards the hydrazine oxidation reaction (HzOR). We present a systematic investigation of undoped graphitic carbons towards the HzOR in alkaline electrolyte. Using highly oriented pyrolytic graphite electrodes, as well as graphite powders enriched in either basal planes or edge defects, we demonstrate that edge defects are the most active catalytic sites during hydrazine oxidation electrocatalysis. Theoretical DFT calculations support and explain the mechanism of HzOR on carbon edges, identifying unsaturated graphene armchair defects as the most likely active sites. Finally, these findings explain the 'double peak' voltammetric feature observed on many doped carbons during the HzOR.
Collapse
Affiliation(s)
- Tomer Y Burshtein
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| | - Kesha Tamakuwala
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| | - Matan Sananis
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| | - Ilya Grinberg
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | | | - David Eisenberg
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| |
Collapse
|
7
|
Zhang E, Tao L, An J, Zhang J, Meng L, Zheng X, Wang Y, Li N, Du S, Zhang J, Wang D, Li Y. Engineering the Local Atomic Environments of Indium Single-Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angew Chem Int Ed Engl 2022; 61:e202117347. [PMID: 35043532 DOI: 10.1002/anie.202117347] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 01/14/2023]
Abstract
The in-depth understanding of local atomic environment-property relationships of p-block metal single-atom catalysts toward the 2 e- oxygen reduction reaction (ORR) has rarely been reported. Here, guided by first-principles calculations, we develop a heteroatom-modified In-based metal-organic framework-assisted approach to accurately synthesize an optimal catalyst, in which single In atoms are anchored by combined N,S-dual first coordination and B second coordination supported by the hollow carbon rods (In SAs/NSBC). The In SAs/NSBC catalyst exhibits a high H2 O2 selectivity of above 95 % in a wide range of pH. Furthermore, the In SAs/NSBC-modified natural air diffusion electrode exhibits an unprecedented production rate of 6.49 mol peroxide gcatalyst -1 h-1 in 0.1 M KOH electrolyte and 6.71 mol peroxide gcatalyst -1 h-1 in 0.1 M PBS electrolyte. This strategy enables the design of next-generation high-performance single-atom materials, and provides practical guidance for H2 O2 electrosynthesis.
Collapse
Affiliation(s)
- Erhuan Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Tao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiangwei Zhang
- Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Lingzhe Meng
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaobo Zheng
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, 201204, P. R. China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, Tianjin, 300072, P. R. China
| | - Shixuan Du
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Condensed Matter Physics, Beijing, 100190, P. R. China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
8
|
Zhang E, Tao L, An J, Zhang J, Meng L, Zheng X, Wang Y, Li N, Du S, Zhang J, Wang D, Li Y. Engineering the Local Atomic Environments of Indium Single‐Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Erhuan Zhang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Lei Tao
- Institute of Physics & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and Ecology Tianjin University Tianjin 300072 P. R. China
| | - Jiangwei Zhang
- Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Lingzhe Meng
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications Experimental Center of Advanced Materials, School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Xiaobo Zheng
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facilities Shanghai Institute of Applied Physics Chinese Academy of Science Shanghai 201204 P. R. China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology Tianjin University Tianjin 300072 P. R. China
| | - Shixuan Du
- Institute of Physics & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Condensed Matter Physics Beijing 100190 P. R. China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications Experimental Center of Advanced Materials, School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
9
|
Hu H, Wang J, Cui B, Zheng X, Lin J, Deng Y, Han X. Atomically Dispersed Selenium Sites on Nitrogen‐Doped Carbon for Efficient Electrocatalytic Oxygen Reduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hui Hu
- School of Materials Science and Engineering Xiangtan University Xiangtan 411105 P. R. China
| | - Jiajun Wang
- School of Materials Science and Engineering Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) Tianjin University Tianjin 300350 P. R. China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| | - Bingfeng Cui
- School of Materials Science and Engineering Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) Tianjin University Tianjin 300350 P. R. China
| | - Xuerong Zheng
- School of Materials Science and Engineering Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) Tianjin University Tianjin 300350 P. R. China
- State Key Laboratory of Marine Resource Utilization in South China Sea School of Materials Science and Engineering Hainan University Haikou 570228 P. R. China
| | - Jianguo Lin
- School of Materials Science and Engineering Xiangtan University Xiangtan 411105 P. R. China
| | - Yida Deng
- School of Materials Science and Engineering Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) Tianjin University Tianjin 300350 P. R. China
- State Key Laboratory of Marine Resource Utilization in South China Sea School of Materials Science and Engineering Hainan University Haikou 570228 P. R. China
| | - Xiaopeng Han
- School of Materials Science and Engineering Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) Tianjin University Tianjin 300350 P. R. China
| |
Collapse
|
10
|
Hu H, Wang J, Cui B, Zheng X, Lin J, Deng Y, Han X. Atomically Dispersed Selenium Sites on Nitrogen-Doped Carbon for Efficient Electrocatalytic Oxygen Reduction. Angew Chem Int Ed Engl 2021; 61:e202114441. [PMID: 34806271 DOI: 10.1002/anie.202114441] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 12/28/2022]
Abstract
Owing to their unique electronic structure and maximum atom utilization efficiency, single-atom catalysts have received widespread attention and exhibited efficient activity. Herein, we report the preparation of non-metal Se single atoms embedded in nitrogen-doped carbon (NC) via a high-temperature reduction strategy for electrocatalytic oxygen reduction reaction (ORR). Selenium dioxide is reduced to selenium by NC at high temperature and partially anchored to form C-Se-C bond. Impressively, the obtained single-atom catalyst exhibits outstanding ORR activity and stability that even surpasses state-of-the-art noble metal catalysts and many previously reported nanocatalysts. Experimental and theoretical calculations reveal that the Se single atoms can serve as the ORR active sites and contribute to lowering the reaction barrier. Our discoveries demonstrate the promising prospects for utilizing metal-free single-atom-based materials for efficient electrocatalysis.
Collapse
Affiliation(s)
- Hui Hu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Jiajun Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced, Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Bingfeng Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced, Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Xuerong Zheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced, Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China.,State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Jianguo Lin
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yida Deng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced, Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China.,State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced, Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
11
|
Wang T, Cao X, Qin H, Shang L, Zheng S, Fang F, Jiao L. P-Block Atomically Dispersed Antimony Catalyst for Highly Efficient Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2021; 60:21237-21241. [PMID: 34254419 DOI: 10.1002/anie.202108599] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/14/2022]
Abstract
Main-group (s- and p-block) metals are generally regarded as catalytically inactive due to the delocalized s/p-band. Herein, we successfully synthesized a p-block antimony single-atom catalyst (Sb SAC) with the Sb-N4 configuration for efficient catalysis of the oxygen reduction reaction (ORR). The obtained Sb SAC exhibits superior ORR activity with a half-wave potential of 0.86 V and excellent stability, which outperforms most transition-metal (TM, d-block) based SACs and commercial Pt/C. In addition, it presents an excellent power density of 184.6 mW cm-2 and a high specific capacity (803.5 mAh g-1 ) in Zn-air battery. Both experiment and theoretical calculation manifest that the active catalytic sites are positively charged Sb-N4 single-metal sites, which have closed d shells. Density of states (DOS) results unveil the p orbital of the atomically dispersed Sb cation in Sb SAC can easily interact with O2 -p orbital to form hybrid states, facilitating the charge transfer and generating appropriate adsorption strength for oxygen intermediates, lowering the energy barrier and modulating the rate-determining step. This work sheds light on the atomic-level preparing p-block Sb metal catalyst for highly active ORR, and further provides valuable guidelines for the rational design of other main-group-metal SACs.
Collapse
Affiliation(s)
- Tongzhou Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hongye Qin
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Long Shang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Siyu Zheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fang Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
12
|
Wang T, Cao X, Qin H, Shang L, Zheng S, Fang F, Jiao L. P
‐Block Atomically Dispersed Antimony Catalyst for Highly Efficient Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tongzhou Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| | - Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| | - Hongye Qin
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| | - Long Shang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| | - Siyu Zheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| | - Fang Fang
- Department of Materials Science Fudan University Shanghai 200433 China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
13
|
Miao R, Compton RG. The Electro-Oxidation of Hydrazine: A Self-Inhibiting Reaction. J Phys Chem Lett 2021; 12:1601-1605. [PMID: 33545004 DOI: 10.1021/acs.jpclett.1c00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The electro-oxidation of hydrazine to form dinitrogen is reported over a wide range of both pH and unbuffered conditions at glassy carbon electrodes. It is shown that hydrazine molecules are only electro-active in their unprotonated form, N2H4, whereas the protonated species N2H5+ is electro-inactive. The oxidation of N2H4 releases four protons per molecule which are diffusing away from the electrode to rapidly (on the voltammetric time scale) protonate unreacted N2H4 molecules diffusing to the electrode converting them into the electro-inactive form, N2H5+; the reaction is self-inhibiting, and the currents flowing are significantly reduced compared to those expected for a simple electrolytic conversion to an extent reflecting the pH and buffer content of the solution local to the electrode. The local pH in turn is controlled partly by the quantity of protons released electrolytically. The self-inhibition is modeled by solving the relevant transport equations with coupled homogeneous chemical kinetics, utilizing Marcus-Hush electron transfer, giving predicted reduced currents reflecting the pKa and kinetics of the N2H4/N2H5+ equilibrium in excellent agreement with experimental voltammetric wave shapes.
Collapse
Affiliation(s)
- Ruiyang Miao
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
14
|
Zheng Y, He F, Chen M, Zhang J, Hu G, Ma D, Guo J, Fan H, Li W, Hu X. Mimicking Hydrazine Dehydrogenase for Efficient Electrocatalytic Oxidation of N 2H 4 by Fe-NC. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38183-38191. [PMID: 32799446 DOI: 10.1021/acsami.0c10637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pursuing nonprecious doped carbon with Pt-like electrocatalytic N2H4 oxidation activity for hydrazine fuel cells (HzFCs) remains a challenge. Herein, we present a Fe/N-doped carbon (Fe-NC) catalyst with mesopore-rich channel and highly dispersed Fe-N sites incorporated in N-doped carbon, as an analogue of hydrazine dehydrogenase (HDH), showing the structure-dependent activity for electrocatalytic oxidation of N2H4. The maximal turnover frequency of the N2H4 oxidation reaction (HzOR) over the Fe-N sites (62870 h-1) is 149-fold that over the pyridinic-N sites of N-doped carbon. The Fe mass activity of HzOR and maximal power density of HzFCs driven by Fe-NC approximately surpass those of Pt/C by 2.3 and 2.2 times, respectively. Theoretical calculation reveals that the Fe-N sites improve the dehydrogenation process of HzOR-related intermediates. One of the roles of the mesoporous structure in Fe-NC resembles that of a substrate channel in HDH for enhancing the transport of N2H4 besides exposing Fe-N sites and improving storage capacity of HzOR-related species.
Collapse
Affiliation(s)
- Yan Zheng
- School of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Fei He
- School of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Mingxu Chen
- School of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jin Zhang
- Shandong Basan Graphite New Material Plant, Zibo 255300, P. R. China
| | - Guangzhi Hu
- School of Chemical Science and Technology, Yunnan University, Kunming 650504, P. R. China
| | - Delong Ma
- School of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Guo
- School of Physics and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Huailin Fan
- School of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Wei Li
- School of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
15
|
Shao Y, Wang Y, Li X, Kheirabad AK, Zhao Q, Yuan J, Wang H. Crosslinking of a Single Poly(ionic liquid) by Water into Porous Supramolecular Membranes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yue Shao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yong‐Lei Wang
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| | - Xiangshuai Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | | | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Luoyu Road No. 1037 Wuhan 430074 China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| | - Hong Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
16
|
Shao Y, Wang Y, Li X, Kheirabad AK, Zhao Q, Yuan J, Wang H. Crosslinking of a Single Poly(ionic liquid) by Water into Porous Supramolecular Membranes. Angew Chem Int Ed Engl 2020; 59:17187-17191. [PMID: 32583932 DOI: 10.1002/anie.202002679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/07/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Shao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yong‐Lei Wang
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| | - Xiangshuai Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | | | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Luoyu Road No. 1037 Wuhan 430074 China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry Stockholm University 10691 Stockholm Sweden
| | - Hong Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
17
|
Wang YC, Wan LY, Cui PX, Tong L, Ke YQ, Sheng T, Zhang M, Sun SH, Liang HW, Wang YS, Zaghib K, Wang H, Zhou ZY, Yuan J. Porous Carbon Membrane-Supported Atomically Dispersed Pyrrole-Type FeN 4 as Active Sites for Electrochemical Hydrazine Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002203. [PMID: 32521114 DOI: 10.1002/smll.202002203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Indexed: 05/09/2023]
Abstract
The rational design of catalytically active sites in porous materials is essential in electrocatalysis. Herein, atomically dispersed Fe-Nx sites supported by hierarchically porous carbon membranes are designed to electrocatalyze the hydrazine oxidation reaction (HzOR), one of the key techniques in electrochemical nitrogen transformation. The high intrinsic catalytic activity of the Fe-Nx single-atom catalyst together with the uniquely mixed micro-/macroporous membrane support positions such an electrode among the best-known heteroatom-based carbon anodes for hydrazine fuel cells. Combined with advanced characterization techniques, electrochemical probe experiments, and density functional theory calculation, the pyrrole-type FeN4 structure is identified as the real catalytic site in HzOR.
Collapse
Affiliation(s)
- Yu-Cheng Wang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Li-Yang Wan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Pei-Xin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Lei Tong
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Qi Ke
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Tian Sheng
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Miao Zhang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Shu-Hui Sun
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, QC, J3X 1S2, Canada
| | - Hai-Wei Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yue-Sheng Wang
- Center of Excellence in Transportation Electrification and Energy Storage, Hydro Québec, Québec, J3X × 1S1, Canada
| | - Karim Zaghib
- Center of Excellence in Transportation Electrification and Energy Storage, Hydro Québec, Québec, J3X × 1S1, Canada
| | - Hong Wang
- College of Chemistry, Nankai University, Tianjing, 300071, P. R. China
| | - Zhi-You Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| |
Collapse
|
18
|
Zhao X, Ranaweera R, Mixdorf JC, Nguyen HM, Luo L. Lowering Interfacial Dissolved Gas Concentration for Highly Efficient Hydrazine Oxidation at Platinum by Fluorosurfactant Modulation. ChemElectroChem 2019. [DOI: 10.1002/celc.201901781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xu Zhao
- Department of ChemistryWayne State University, Detroit Michigan 48202 United States
| | - Ruchiranga Ranaweera
- Department of ChemistryWayne State University, Detroit Michigan 48202 United States
| | - Jason C. Mixdorf
- Department of ChemistryWayne State University, Detroit Michigan 48202 United States
| | - Hien M. Nguyen
- Department of ChemistryWayne State University, Detroit Michigan 48202 United States
| | - Long Luo
- Department of ChemistryWayne State University, Detroit Michigan 48202 United States
| |
Collapse
|