1
|
Zhou F, Ruan Y, Zhu M, Gao X, Guo W, Liu X, Wang W, Chen M, Wu G, Yao T, Zhou H, Wu Y. Coupling Single-Atom Sites and Ordered Intermetallic PtM Nanoparticles for Efficient Catalysis in Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302328. [PMID: 37431211 DOI: 10.1002/smll.202302328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 07/12/2023]
Abstract
The design of an efficient catalytic system with low Pt loading and excellent stability for the acidic oxygen reduction reaction is still a challenge for the extensive application of proton-exchange membrane fuel cells. Here, a gas-phase ordered alloying strategy is proposed to construct an effective synergistic catalytic system that blends PtM intermetallic compounds (PtM IMC, M = Fe, Cu, and Ni) and dense isolated transition metal sites (M-N4 ) on nitrogen-doped carbon (NC). This strategy enables Pt nanoparticles and defects on the NC support to timely trap flowing metal salt without partial aggregation, which is attributed to the good diffusivity of gaseous transition metal salts with low boiling points. In particular, the resulting Pt1 Fe1 IMC cooperating with Fe-N4 sites achieves cooperative oxygen reduction with a half-wave potential up to 0.94 V and leads to a high mass activity of 0.51 A mgPt -1 and only 23.5% decay after 30 k cycles, both of which exceed DOE 2025 targets. This strategy provides a method for reducing Pt loading in fuel cells by integrating Pt-based intermetallics and single transition metal sites to produce an efficient synergistic catalytic system.
Collapse
Affiliation(s)
- Fangyao Zhou
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yaner Ruan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Mengzhao Zhu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoping Gao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Wenxin Guo
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Wenyu Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Min Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Geng Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Huang Zhou
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yuen Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| |
Collapse
|
2
|
Zeng WJ, Wang C, Yin P, Tong L, Yan QQ, Chen MX, Xu SL, Liang HW. Alloying Matters for Ordering: Synthesis of Highly Ordered PtCo Intermetallic Catalysts for Fuel Cells. Inorg Chem 2023; 62:5262-5269. [PMID: 36947415 DOI: 10.1021/acs.inorgchem.3c00331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Porous carbon-supported atomically ordered intermetallic compounds (IMCs) are promising electrocatalysts in boosting oxygen reduction reaction (ORR) for fuel cell applications. However, the formation mechanism of IMC structures under high temperatures is poorly understood, which hampers the synthesis of highly ordered IMC catalysts with promoted ORR performance. Here, we employ high-temperature X-ray diffraction and energy-dispersive spectroscopic elemental mapping techniques to study the formation process of IMCs, by taking PtCo for example, in an industry-relevant impregnation synthesis. We find that high-temperature annealing is crucial in promoting the formation of alloy particles with a stoichiometric Co/Pt ratio, which in turn is the precondition for transforming the disordered alloys to ordered intermetallic structures at a relatively low temperature. Based on the findings, we accordingly synthesize highly ordered L10-type PtCo catalysts with a remarkable ORR performance in fuel cells.
Collapse
Affiliation(s)
- Wei-Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Peng Yin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lei Tong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qiang-Qiang Yan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ming-Xi Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shi-Long Xu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Wei Liang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Li S, Li Z, Huang T, Xie H, Miao Z, Liang J, Pan R, Wang T, Han J, Li Q. Si Doping Enables Activity and Stability Enhancement on Atomically Dispersed Fe-N x /C Electrocatalysts for Oxygen Reduction in Acid. CHEMSUSCHEM 2023; 16:e202201795. [PMID: 36355035 DOI: 10.1002/cssc.202201795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Fe-N-C represents the most promising non-precious metal catalysts (NPMCs) for the oxygen reduction reaction (ORR) in fuel cells, but often suffers from poor stability in acid due to the dissolution of metal sites and the poor oxidation resistance of carbon substrates. In this work, silicon-doped iron-nitrogen-carbon (Si/Fe-N-C) catalysts were developed by in situ silicon doping and metal-polymer coordination. It was found that Si doping could not only promote the density of Fe-Nx /C active sites but also elevated the content of graphitic carbon through catalytic graphitization. The best-performing Si/Fe-N-C exhibited a half-wave potential of 0.817 V vs. reversible hydrogen electrode in 0.5 m H2 SO4 , outperforming that of undoped Fe-N-C and most of the reported Fe-N-C catalysts. It also exhibited significantly enhanced stability at elevated temperature (≥60 °C). This work provides a new way to develop non-precious metal ORR catalysts with improved activity and stability in acidic media.
Collapse
Affiliation(s)
- Shenzhou Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, P. R. China
| | - Zhiqiang Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianping Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huan Xie
- International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zhengpei Miao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiashun Liang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, P. R. China
| | - Ran Pan
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tanyuan Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiantao Han
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, P. R. China
| |
Collapse
|
4
|
Zeng WJ, Wang C, Yan QQ, Yin P, Tong L, Liang HW. Phase diagrams guide synthesis of highly ordered intermetallic electrocatalysts: separating alloying and ordering stages. Nat Commun 2022; 13:7654. [PMID: 36496497 PMCID: PMC9741640 DOI: 10.1038/s41467-022-35457-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Supported platinum intermetallic compound catalysts have attracted considerable attention owing to their remarkable activities and durability for the oxygen reduction reaction in proton-exchange membrane fuel cells. However, the synthesis of highly ordered intermetallic compound catalysts remains a challenge owing to the limited understanding of their formation mechanism under high-temperature conditions. In this study, we perform in-situ high-temperature X-ray diffraction studies to investigate the structural evolution in the impregnation synthesis of carbon-supported intermetallic catalysts. We identify the phase-transition-temperature (TPT)-dependent evolution process that involve concurrent (for alloys with high TPT) or separate (for alloys with low TPT) alloying/ordering stages. Accordingly, we realize the synthesis of highly ordered intermetallic catalysts by adopting a separate annealing protocol with a high-temperature alloying stage and a low-temperature ordering stage, which display a high mass activity of 0.96 A mgPt-1 at 0.9 V in H2-O2 fuel cells and a remarkable durability.
Collapse
Affiliation(s)
- Wei-Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chang Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Qiang-Qiang Yan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Peng Yin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Tong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hai-Wei Liang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
5
|
Song TW, Xu C, Sheng ZT, Yan HK, Tong L, Liu J, Zeng WJ, Zuo LJ, Yin P, Zuo M, Chu SQ, Chen P, Liang HW. Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts. Nat Commun 2022; 13:6521. [PMID: 36316330 PMCID: PMC9622856 DOI: 10.1038/s41467-022-34037-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Supported ordered intermetallic compounds exhibit superior catalytic performance over their disordered alloy counterparts in diverse reactions. But the synthesis of intermetallic compounds catalysts often requires high-temperature annealing that leads to the sintering of metals into larger crystallites. Herein, we report a small molecule-assisted impregnation approach to realize the general synthesis of a family of intermetallic catalysts, consisting of 18 binary platinum intermetallic compounds supported on carbon blacks. The molecular additives containing heteroatoms (that is, O, N, or S) can be coordinated with platinum in impregnation and thermally converted into heteroatom-doped graphene layers in high-temperature annealing, which significantly suppress alloy sintering and insure the formation of small-sized intermetallic catalysts. The prepared optimal PtCo intermetallics as cathodic oxygen-reduction catalysts exhibit a high mass activity of 1.08 A mgPt-1 at 0.9 V in H2-O2 fuel cells and a rated power density of 1.17 W cm-2 in H2-air fuel cells.
Collapse
Affiliation(s)
- Tian-Wei Song
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Cong Xu
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Zhu-Tao Sheng
- grid.440646.40000 0004 1760 6105College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000 China
| | - Hui-Kun Yan
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Lei Tong
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Jun Liu
- grid.454811.d0000 0004 1792 7603Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,Anhui Contango New Energy Technology Co., Ltd, Hefei, 230088 China
| | - Wei-Jie Zeng
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Lu-Jie Zuo
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Peng Yin
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Ming Zuo
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| | - Sheng-Qi Chu
- grid.9227.e0000000119573309Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
| | - Ping Chen
- grid.252245.60000 0001 0085 4987School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601 China
| | - Hai-Wei Liang
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026 China
| |
Collapse
|
6
|
Chen H, Ze H, Yue M, Wei D, A Y, Wu Y, Dong J, Zhang Y, Zhang H, Tian Z, Li J. Unmasking the Critical Role of the Ordering Degree of Bimetallic Nanocatalysts on Oxygen Reduction Reaction by In Situ Raman Spectroscopy. Angew Chem Int Ed Engl 2022; 61:e202117834. [DOI: 10.1002/anie.202117834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Heng‐Quan Chen
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces MOE Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering College of Materials Xiamen University Xiamen 361005 China
| | - Huajie Ze
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces MOE Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering College of Materials Xiamen University Xiamen 361005 China
| | - Mu‐Fei Yue
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces MOE Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering College of Materials Xiamen University Xiamen 361005 China
| | - Di‐Ye Wei
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces MOE Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering College of Materials Xiamen University Xiamen 361005 China
| | - Yao‐Lin A
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces MOE Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering College of Materials Xiamen University Xiamen 361005 China
| | - Yuan‐Fei Wu
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces MOE Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering College of Materials Xiamen University Xiamen 361005 China
| | - Jin‐Chao Dong
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces MOE Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering College of Materials Xiamen University Xiamen 361005 China
| | - Yue‐Jiao Zhang
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces MOE Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering College of Materials Xiamen University Xiamen 361005 China
| | - Hua Zhang
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces MOE Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering College of Materials Xiamen University Xiamen 361005 China
| | - Zhong‐Qun Tian
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces MOE Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering College of Materials Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 China
| | - Jian‐Feng Li
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces MOE Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering College of Materials Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 China
- College of Optical and Electronic Technology China Jiliang University Hangzhou 310018 Zhejiang China
- Shenzhen Research Institute of Xiamen University Shenzhen 518000 China
| |
Collapse
|
7
|
Yang Z, Yang H, Shang L, Zhang T. Ordered PtFeIr Intermetallic Nanowires Prepared through a Silica‐Protection Strategy for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhaojun Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Hongzhou Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
8
|
Chen HQ, Ze H, Yue MF, Wei DY, Yao-Lin A, Wu YF, Dong JC, Zhang YJ, Zhang H, Tian ZQ, Li JF. Unmasking the Critical Role of the Ordering Degree of Bimetallic Nanocatalysts on Oxygen Reduction Reaction by In‐situ Raman Spectroscopy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jian-Feng Li
- Xiamen University Chemistry No. 422, Simingnan Road 361005 Xiamen CHINA
| |
Collapse
|
9
|
Ma Z, Mohapatra J, Wei K, Liu JP, Sun S. Magnetic Nanoparticles: Synthesis, Anisotropy, and Applications. Chem Rev 2021; 123:3904-3943. [PMID: 34968046 DOI: 10.1021/acs.chemrev.1c00860] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Anisotropy is an important and widely present characteristic of materials that provides desired direction-dependent properties. In particular, the introduction of anisotropy into magnetic nanoparticles (MNPs) has become an effective method to obtain new characteristics and functions that are critical for many applications. In this review, we first discuss anisotropy-dependent ferromagnetic properties, ranging from intrinsic magnetocrystalline anisotropy to extrinsic shape and surface anisotropy, and their effects on the magnetic properties. We further summarize the syntheses of monodisperse MNPs with the desired control over the NP dimensions, shapes, compositions, and structures. These controlled syntheses of MNPs allow their magnetism to be finely tuned for many applications. We discuss the potential applications of these MNPs in biomedicine, magnetic recording, magnetotransport, permanent magnets, and catalysis.
Collapse
Affiliation(s)
- Zhenhui Ma
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jeotikanta Mohapatra
- Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Kecheng Wei
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - J Ping Liu
- Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
10
|
Zhang S, Jiang K, Jiang H, Zhu J, Ji H, Lu C, Zhang L, Li J, Chen Z, Ke C, Zhuang X. Pt3Fe nanoparticles triggered high catalytic performance for oxygen reduction reaction in both alkaline and acidic media. ChemElectroChem 2021. [DOI: 10.1002/celc.202101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Kaiyue Jiang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Haitao Jiang
- Chinese Academy of Sciences Shanghai institude of Microsystem and information Technology CHINA
| | - Jinhui Zhu
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Huiping Ji
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Chenbao Lu
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering dongchuan road 800 200240 Shanghai CHINA
| | - Longhai Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Jin Li
- Henan Engineering Technology Research Center of Fuel Cell and Hydrogen Energy Zhengzhou Yutong Bus Co.Ltd CHINA
| | - Zhenying Chen
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Changchun Ke
- Shanghai Jiao Tong University School of Mechanical Engineering CHINA
| | - Xiaodong Zhuang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
11
|
Yang Z, Yang H, Shang L, Zhang T. Ordered PtFeIr Intermetallic Nanowires Prepared through a Silica-Protection Strategy for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2021; 61:e202113278. [PMID: 34890098 DOI: 10.1002/anie.202113278] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/08/2022]
Abstract
Developing efficient and stable Pt-based oxygen reduction reaction (ORR) catalysts is a way to promote the large-scale application of fuel cells. Pt-based alloy nanowires are promising ORR catalysts, but their application is hampered by activity loss caused by structural destruction during long-term cycling. Herein, the preparation of ordered PtFeIr intermetallic nanowire catalysts with an average diameter of 2.6 nm and face-centered tetragonal structure (fct-PtFeIr/C) is reported. A silica-protected strategy prevents the deformation of PtFeIr nanowires during the phase transition at high temperature. The as-prepared fct-PtFeIr/C exhibited superior mass activity for ORR (2.03 A mgPt -1 ) than disordered PtFeIr nanowires with face-centered cubic structure (1.11 A mgPt -1 ) and commercial Pt/C (0.21 A mgPt -1 ). Importantly, the structure and electrochemical performance of fct-PtFeIr/C were maintained after stability tests, showing the advantages of the ordered structure.
Collapse
Affiliation(s)
- Zhaojun Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongzhou Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Jin C, Lou Y, Liu J, Wang F. Crystal Orientation in Pt-Based Alloys Induced by W(CO) 6: Driving Oxygen Electroreduction Catalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45406-45415. [PMID: 34542999 DOI: 10.1021/acsami.1c10790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Integrating crystal orientation as well as structural and compositional advantages into one catalyst might be a promising strategy for high-performance Pt-based catalysts for proton-exchange membrane fuel cells. Herein, by introducing W(CO)6 as a structure-oriented template, Pt-based alloys with a well-defined crystal orientation along the (111) facet were obtained. The oxygen reduction reaction mass and specific activities of the crystal-facet-tuned alloys reach a new level. Moreover, the outstanding durability stems from the combination of their exposed crystal facets and incorporated W. The density functional theory calculation results reveal that the formation of the preferred (111) alloys can be attributed to the lower free energy of (111) facets and the weaker adsorption of CO released by W(CO)6. This proposed synthesis strategy of using transition-metal carbonyl compounds as additives to synthesize alloys with strong crystal orientation may open a door to the design of various alloy catalysts with ultrahigh activity.
Collapse
Affiliation(s)
- Chun Jin
- State Key Laboratory of Chemical Resource Engineering; Beijing Key Laboratory of Electrochemical Process and Technology for Materials; Beijing University of Chemical Technology, Beijing 100029, P R China
| | - Yiwei Lou
- State Key Laboratory of Chemical Resource Engineering; Beijing Key Laboratory of Electrochemical Process and Technology for Materials; Beijing University of Chemical Technology, Beijing 100029, P R China
| | - Jingjun Liu
- State Key Laboratory of Chemical Resource Engineering; Beijing Key Laboratory of Electrochemical Process and Technology for Materials; Beijing University of Chemical Technology, Beijing 100029, P R China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering; Beijing Key Laboratory of Electrochemical Process and Technology for Materials; Beijing University of Chemical Technology, Beijing 100029, P R China
| |
Collapse
|
13
|
Wang Z, Xu X, Liu Z, Zhang D, Yuan J, Liu J. Multifunctional Metal Phosphides as Superior Host Materials for Advanced Lithium-Sulfur Batteries. Chemistry 2021; 27:13494-13512. [PMID: 34288172 DOI: 10.1002/chem.202101873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 11/11/2022]
Abstract
For the past few years, a new generation of energy storage systems with large theoretical specific capacity has been urgently needed because of the rapid development of society. Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for novel battery systems, since their resurgence at the end of the 20th century Li-S batteries have attracted ever more attention, attributed to their notably high theoretical energy density of 2600 W h kg-1 , which is almost five times larger than that of commercial lithium-ion batteries (LIBs). One of the determining factors in Li-S batteries is how to design/prepare the sulfur cathode. For the sulfur host, the major technical challenge is avoiding the shuttling effect that is caused by soluble polysulfides during the reaction. In past decades, though the sulfur cathode has developed greatly, there are still some enormous challenges to be conquered, such as low utilization of S, rapid decay of capacity, and poor cycle life. This article spotlights the recent progress and foremost findings in improving the performance of Li-S batteries by employing multifunctional metal phosphides as host materials. The current state of development of the sulfur electrode of Li-S batteries is summarized by emphasizing the relationship between the essential properties of metal phosphide-based hybrid nanomaterials, the chemical reaction with lithium polysulfides and the latter's influence on electrochemical performance. Finally, trends in the development and practical application of Li-S batteries are also pointed out.
Collapse
Affiliation(s)
- Zhuosen Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xijun Xu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Zhengbo Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Dechao Zhang
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jujun Yuan
- School of Physics and Electronics, Gannan Normal University, Ganzhou, 341000, P. R China
| | - Jun Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China.,School of Physics and Electronics, Gannan Normal University, Ganzhou, 341000, P. R China
| |
Collapse
|
14
|
Qin Y, Wang Z, Yu W, Sun Y, Wang D, Lai J, Guo S, Wang L. High Valence M-Incorporated PdCu Nanoparticles (M = Ir, Rh, Ru) for Water Electrolysis in Alkaline Solution. NANO LETTERS 2021; 21:5774-5781. [PMID: 34187162 DOI: 10.1021/acs.nanolett.1c01581] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The high-valence metal catalysts show extraordinary talent in various electrochemical reactions. However, there is no facile method to synthesize high-valence noble metal-based materials. Herein, we synthesized the different high valence noble metal M-incorporated PdCu nanoparticles (M = Ir, Ru, Rh) by the assistant of Fe3+ and exhibit excellent performance for water electrolysis. In 0.1 M KOH, the OER and HER mass activities of Ir16-PdCu/C were 50.5 and 16.5 times as much as PdCu/C, and achieved a current density of 10 mA cm-2 at 1.63 V when worked for overall water splitting. DFT calculation revealed that the incorporating of high valence Ir could optimize the binding energy of the intermediate products, and promote the evolution of oxygen and hydrogen. Ex situ XPS shows that the huge amount of oxidized Ir (V) formed in OER could promote the formation of O-O bonds.
Collapse
Affiliation(s)
- Yingnan Qin
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Zuochao Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Wenhao Yu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Yingjun Sun
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Dan Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Jianping Lai
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Shaojun Guo
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
15
|
Miao Z, Xia Y, Liang J, Xie L, Chen S, Li S, Wang HL, Hu S, Han J, Li Q. Constructing Co-N-C Catalyst via a Double Crosslinking Hydrogel Strategy for Enhanced Oxygen Reduction Catalysis in Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100735. [PMID: 34145761 DOI: 10.1002/smll.202100735] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Exploiting platinum-group-metal (PGM)-free electrocatalysts with remarkable activity and stability toward oxygen reduction reaction (ORR) is of significant importance to the large-scale commercialization of proton exchange membrane fuel cells (PEMFCs). Here, a high-performance and anti-Fenton reaction cobalt-nitrogen-carbon (Co-N-C) catalyst is reported via employing double crosslinking (DC) hydrogel strategy, which consists of the chemical crosslinking between acrylic acid (AA) and acrylamide (AM) copolymerization and metal coordinated crosslinking between Co2+ and P(AA-AM) copolymer. The resultant DC hydrogel can benefit the Co2+ dispersion via chelated Co-N/O bonds and relieve metal agglomeration during the subsequent pyrolysis, resulting in the atomically dispersed Co-Nx/C active sites. By optimizing the ratio of AA/AM, the optimal P(AA-AM)(5-1)-Co-N catalyst exhibits a high content of nitrogen doping (12.36 at%) and specific surface area (1397 m2 g-1 ), significantly larger than that of the PAA-Co-N catalyst (10.59 at%/746 m2 g-1 ) derived from single crosslinking (SC) hydrogel. The electrochemical measurements reveal that P(AA-AM)(5-1)-Co-N possesses enhanced ORR activity (half-wave potential (E1/2 ) ≈0.820 V versus the reversible hydrogen electrode (RHE)) and stability (≈4 mV shift in E1/2 after 5000 potential cycles in 0.5 m H2 SO4 at 60 ºC) relative to PAA-Co-N, which is higher than most Co-N-C catalysts reported so far.
Collapse
Affiliation(s)
- Zhengpei Miao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yu Xia
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jiashun Liang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Linfeng Xie
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shaoqing Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Shenzhou Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hsing-Lin Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Song Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiantao Han
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
16
|
Wang Y, Yu HZ, Ying J, Tian G, Liu Y, Geng W, Hu J, Lu Y, Chang GG, Ozoemena KI, Janiak C, Yang XY. Ultimate Corrosion to Pt-Cu Electrocatalysts for Enhancing Methanol Oxidation Activity and Stability in Acidic Media. Chemistry 2021; 27:9124-9128. [PMID: 33788984 DOI: 10.1002/chem.202100754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 11/11/2022]
Abstract
Alloying platinum (Pt) with transition metals (M), as an established class of electrocatalysts, reduces the use of Pt and improves the electrocatalytic performance. However, the stability of transition metals in nanostructured platinum alloys is a fundamental and practical problem in electrocatalysis, due to leaching of transition metals under acidic operating condition. Here, a corrosion method has been developed for a Pt-Cu electrocatalyst with high activity (6.6 times that of commercial Pt/C) and excellent stability for the methanol oxidation reaction (MOR) under acidic operating conditions. The mechanism of formation has been studied, and possible mesostructured re-formation and atomic re-organization have been proposed. This work offers an effective strategy for the facile synthesis of a highly acid-stable PtM alloying and opens a door to high-performance design for electrocatalysts.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Hao-Zheng Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jie Ying
- School of Chemical Engineering and Technology, Sun Yat-sen University (Zhuhai), Zhuhai, 519000, P. R. China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yu Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wei Geng
- School of Chemical Engineering and Technology, Sun Yat-sen University (Zhuhai), Zhuhai, 519000, P. R. China
| | - Jie Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yi Lu
- School of Chemical Engineering and Technology, Sun Yat-sen University (Zhuhai), Zhuhai, 519000, P. R. China
| | - Gang-Gang Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, 40204, Germany
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science & Engineering, International School of Materials Science & Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China.,School of Engineering and Applied Sciences, Harvard University, Cambridge, 02138, USA
| |
Collapse
|
17
|
Guo J, Gao L, Tan X, Yuan Y, Kim J, Wang Y, Wang H, Zeng Y, Choi S, Smith SC, Huang H. Template‐Directed Rapid Synthesis of Pd‐Based Ultrathin Porous Intermetallic Nanosheets for Efficient Oxygen Reduction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jingchun Guo
- College of Materials Science and Engineering Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha Hunan 410082 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Department of Experimental and Practical Teaching Management West Anhui University Luan Anhui 237012 China
| | - Lei Gao
- College of Materials Science and Engineering Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha Hunan 410082 China
| | - Xin Tan
- Integrated Materials Design Laboratory Department of Applied Mathematics Research School of Physics The Australian National University Canberra ACT 2601 Australia
| | - Yuliang Yuan
- College of Materials Science and Engineering Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha Hunan 410082 China
| | - Jeonghyeon Kim
- Department of Chemistry and Green-Nano Materials Research Center Kyungpook National University Daegu 41566 Korea
| | - Yu Wang
- College of Materials Science and Engineering Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha Hunan 410082 China
| | - Hui Wang
- College of Materials Science and Engineering Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha Hunan 410082 China
| | - Yu‐Jia Zeng
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Sang‐Il Choi
- Department of Chemistry and Green-Nano Materials Research Center Kyungpook National University Daegu 41566 Korea
| | - Sean C. Smith
- Integrated Materials Design Laboratory Department of Applied Mathematics Research School of Physics The Australian National University Canberra ACT 2601 Australia
| | - Hongwen Huang
- College of Materials Science and Engineering Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha Hunan 410082 China
| |
Collapse
|
18
|
Guo J, Gao L, Tan X, Yuan Y, Kim J, Wang Y, Wang H, Zeng YJ, Choi SI, Smith SC, Huang H. Template-Directed Rapid Synthesis of Pd-Based Ultrathin Porous Intermetallic Nanosheets for Efficient Oxygen Reduction. Angew Chem Int Ed Engl 2021; 60:10942-10949. [PMID: 33751779 DOI: 10.1002/anie.202100307] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 11/08/2022]
Abstract
Atomically ordered intermetallic nanoparticles exhibit improved catalytic activity and durability relative to random alloy counterparts. However, conventional methods with time-consuming and high-temperature syntheses only have rudimentary capability in controlling the structure of intermetallic nanoparticles, hindering advances of intermetallic nanocatalysts. We report a template-directed strategy for rapid synthesis of Pd-based (PdM, M=Pb, Sn and Cd) ultrathin porous intermetallic nanosheets (UPINs) with tunable sizes. This strategy uses preformed seeds, which act as the template to control the deposition of foreign atoms and the subsequent interatomic diffusion. Using the oxygen reduction reaction (ORR) as a model reaction, the as-synthesized Pd3 Pb UPINs exhibit superior activity, durability, and methanol tolerance. The favored geometrical structure and interatomic interaction between Pd and Pb in Pd3 Pb UPINs are concluded to account for the enhanced ORR performance.
Collapse
Affiliation(s)
- Jingchun Guo
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan, 410082, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,Department of Experimental and Practical Teaching Management, West Anhui University, Luan, Anhui, 237012, China
| | - Lei Gao
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan, 410082, China
| | - Xin Tan
- Integrated Materials Design Laboratory, Department of Applied Mathematics, Research School of Physics, The Australian National University, Canberra, ACT, 2601, Australia
| | - Yuliang Yuan
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan, 410082, China
| | - Jeonghyeon Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Korea
| | - Yu Wang
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan, 410082, China
| | - Hui Wang
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan, 410082, China
| | - Yu-Jia Zeng
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Korea
| | - Sean C Smith
- Integrated Materials Design Laboratory, Department of Applied Mathematics, Research School of Physics, The Australian National University, Canberra, ACT, 2601, Australia
| | - Hongwen Huang
- College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
19
|
Li D, Gong Y, Li G, Lyu X, Dai Z, Wang Q. Three-step method with self-sacrificial Co to prepare a uniform 5 nm-scale Pt catalyst for the oxygen reduction reaction. NEW J CHEM 2021. [DOI: 10.1039/d1nj01780b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Simple and rapid preparation method for a highly dispersed and small-sized CoPt catalyst.
Collapse
Affiliation(s)
- Donggang Li
- School of Metallurgy
- Northeastern University
- Shenyang 110004
- P. R. China
| | - Yanlong Gong
- School of Metallurgy
- Northeastern University
- Shenyang 110004
- P. R. China
| | - Gen Li
- School of Materials Science and Engineering
- Shenyang Ligong University
- Shenyang
- P. R. China
| | - Xiao Lyu
- School of Materials Science and Engineering
- Shenyang Ligong University
- Shenyang
- P. R. China
| | - Zhenqing Dai
- College of Sciences
- Northeastern University
- Shenyang 110004
- P. R. China
| | - Qiang Wang
- Key Laboratory of Electromagnetic Processing of Materials
- Northeastern University
- Shenyang 110004
- P. R. China
| |
Collapse
|
20
|
Li J, Sharma S, Wei K, Chen Z, Morris D, Lin H, Zeng C, Chi M, Yin Z, Muzzio M, Shen M, Zhang P, Peterson AA, Sun S. Anisotropic Strain Tuning of L10 Ternary Nanoparticles for Oxygen Reduction. J Am Chem Soc 2020; 142:19209-19216. [DOI: 10.1021/jacs.0c08962] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Junrui Li
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Shubham Sharma
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kecheng Wei
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Zitao Chen
- Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - David Morris
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Honghong Lin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Cheng Zeng
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zhouyang Yin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Michelle Muzzio
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Mengqi Shen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Peng Zhang
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Andrew A. Peterson
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|