1
|
Feng Z, Zhou J, He X, Wang B, Xie G, Qiao X, Liu L, Xie Z, Ma Y. Extremely Stable Perylene Bisimide-Bridged Regioisomeric Diradicals and Their Redox Properties. Chemistry 2024; 30:e202302943. [PMID: 37803935 DOI: 10.1002/chem.202302943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
Excellent stability is an essential premise for organic diradicals to be used in organic electronic and spintronic devices. We have attached two tris(2,4,6-trichlorophenyl)methyl (TTM) radical building blocks to the two sides of perylene bisimide (PBI) bridges and obtained two regioisomeric diradicals (1,6-TTM-PBI and 1,7-TTM-PBI). Both of the isomers show super stability rather than the monomeric TTM under ambient conditions, due to the increased conjugation and the electron-withdrawing effects of the PBI bridges. The diradicals show distinct and reversible multistep redox processes, and a spectro-electrochemistry investigation revealed the generation of organic mixed-valence (MV) species during reduction processes. The two diradicals have singlet ground states, very small singlet-triplet energy gaps (ΔES-T ) and a pure open-shell character (with diradical character y0 =0.966 for 1,6-TTM-PBI and 0.967 for 1,7-TTM-PBI). This work opens a window to developing very stable diradicals and offers the opportunity of their further application in optical, electronic and magnetic devices.
Collapse
Affiliation(s)
- Zhibin Feng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jiadong Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiandong He
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Bohan Wang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Guojing Xie
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xianfeng Qiao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Linlin Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zengqi Xie
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
2
|
Li X, Wang YL, Chen C, Han YF. Luminescent Crystalline Carbon- and Nitrogen-Centered Organic Radicals Based on N-Heterocyclic Carbene-Triphenylamine Hybrids. Chemistry 2023; 29:e202203242. [PMID: 36331436 DOI: 10.1002/chem.202203242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
Developing luminescent radicals with tunable emission is a challenging task due to the limitation of alternative skeletons. Herein, a series of carbene-triphenylamine hybrids were prepared by the direct C2-arylation of N-heterocyclic carbenes with 4-bromo-N,N-bis(4-methoxyphenyl)aniline. These hybrids showed multiple redox-active properties and could be converted to carbon-centered luminescent radicals with blue-to-cyan emissions (λmax : 436-486 nm) or nitrogen-centered luminescent radicals with orange emissions (λmax : 590-623 nm) through chemical reduction or oxidation, respectively. The radical species were characterized by electron paramagnetic resonance spectroscopy, ultraviolet-visible spectroscopy, and single-crystal X-ray diffractometry analysis. Notably, the corresponding nitrogen-centered radicals exhibited good stability in atmospheric air, and their thermal decomposition temperatures were determined to be above 200 °C. In addition, spectral and theoretical calculations indicate that all radicals exhibit anti-Kasha emissions.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yi-Lin Wang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Can Chen
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
3
|
Liu G, Zhang W, Xiao Y, Cao J, Liang Y, Liu G, Zhou L, Gong J, Wang J, Wang Q. Dimerized Nitrogen-Annulated Perylene Synthesized from 1,6-Diazecine as Chiral Emitter. Chemistry 2023; 29:e202203550. [PMID: 36720699 DOI: 10.1002/chem.202203550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
In this work, nitrogen-annulated perylene (NP) was dimerized into one framework connected by two nitrogen atoms, generating the target molecule of DNP-DA. Owing to the substructure of 1,6-diazecine ten-membered ring, DNP-DA illustrates helical chirality with moderate dissymmetry factor, elevated molecular levels, expanded conjugation and supramolecular interactions with acceptors etc. Notably, DNP-DA represents a limited example of nitrogen-perylene based CPL emitter with glum around 6×10-3 . Intrigued by the facile fabrication via a simple amination-cross coupling sequence and other above advancing features, this work demonstrates the potential generality of utilizing 1,6-diazecine as a chiral unit to build CPL-active materials.
Collapse
Affiliation(s)
- Guiru Liu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Wenhao Zhang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Yao Xiao
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Jing Cao
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Yamei Liang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Guanghua Liu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Laiyun Zhou
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Jianye Gong
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Jianguo Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Qing Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| |
Collapse
|
4
|
Du C, Zhu X, Yang C, Liu M. Stacked Reticular Frame Boosted Circularly Polarized Luminescence of Chiral Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cong Du
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Chenchen Yang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
5
|
Du C, Zhu X, Yang C, Liu M. Stacked Reticular Frame Boosted Circularly Polarized Luminescence of Chiral Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021; 61:e202113979. [PMID: 34693602 DOI: 10.1002/anie.202113979] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 12/22/2022]
Abstract
Chiral covalent organic frameworks (COFs) with circularly polarized luminescence (CPL) are intriguing as advanced chiroptical materials but have not been reported to date. We constructed chiroptical COF materials with CPL activity through the convenient Knoevenagel condensation of formyl-functionalized axially chiral linkers and C3-symmetric 1,3,5-benzenetriacetonitrile. Remarkably, the as-prepared chiral COFs showed high absorption and luminescent dissymmetric factors up to 0.02 (gabs ) and 0.04 (glum ), respectively. In contrast, the branched chiral polymers from the same starting monomers were CPL silent. Structural and spectral characterization revealed that the reticular frame was indispensable for CPL generation via confined chirality transfer. Moreover, reticular stacking boosted the CPL performance significantly due to the interlayer restriction of frame. This work demonstrates the first example of a CPL-active COF and provides insight into CPL generation through covalent reticular chemistry, which will play a constructive role in the future design of high-performance CPL materials.
Collapse
Affiliation(s)
- Cong Du
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Chenchen Yang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Hattori Y, Tsubaki S, Matsuoka R, Kusamoto T, Nishihara H, Uchida K. Expansion of Photostable Luminescent Radicals by Meta-Substitution. Chem Asian J 2021; 16:2538-2544. [PMID: 34270166 DOI: 10.1002/asia.202100612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Indexed: 11/12/2022]
Abstract
Polychlorinated pyridyldiphenylmethyl radicals having substituents meta to the position bearing the carbon-centered radical (α-carbon) are synthesized. All of them are stable in ambient conditions in solutions and fluorescent in cyclohexane. The fluorescence of the radicals with bromo, phenyl, 4-chlorophenyl, or 2-pyridyl substituents are enhanced in chloroform, while the emission of the radicals with 2-thienyl or 2-furyl substituents are quenched in chloroform. DFT and TD-DFT calculations indicate that the first doublet excited states of the former are locally excited, while the first doublet excited states of the latter are charge transfer states from the π-electron-donating substituent to the accepting radical. The latter also show much higher photostability under 370-nm light irradiation compared with the first reported photostable fluorescent radical, (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (PyBTM), with pronounced bathochromic shifts of the fluorescence.
Collapse
Affiliation(s)
- Yohei Hattori
- Materials Chemistry Course, Faculty of Advanced Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Shunsuke Tsubaki
- Materials Chemistry Course, Faculty of Advanced Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Ryota Matsuoka
- Department of Life and Coordination-Complex Molecular Science, Instite for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Tetsuro Kusamoto
- Department of Life and Coordination-Complex Molecular Science, Instite for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Hiroshi Nishihara
- Research Institute for Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kingo Uchida
- Materials Chemistry Course, Faculty of Advanced Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| |
Collapse
|
7
|
Matsuoka R, Kimura S, Kusamoto T. Solid‐State Room‐Temperature Near‐Infrared Photoluminescence of a Stable Organic Radical. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ryota Matsuoka
- Institute for Molecular Science 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- SOKENDAI (The Graduate University for Advanced Studies) Shonan Village Hayama 240-0193 Kanagawa Japan
| | - Shojiro Kimura
- Institute for Materials Research Tohoku University 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Tetsuro Kusamoto
- Institute for Molecular Science 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- SOKENDAI (The Graduate University for Advanced Studies) Shonan Village Hayama 240-0193 Kanagawa Japan
- JST-PRESTO 4-1-8, Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
8
|
Kimura S, Kimura S, Kato K, Teki Y, Nishihara H, Kusamoto T. A ground-state-dominated magnetic field effect on the luminescence of stable organic radicals. Chem Sci 2021; 12:2025-2029. [PMID: 34163964 PMCID: PMC8179284 DOI: 10.1039/d0sc05965j] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/16/2020] [Indexed: 11/21/2022] Open
Abstract
Organic radicals are an emerging class of luminophores possessing multiplet spin states and potentially showing spin-luminescence correlated properties. We investigated the mechanism of recently reported magnetic field sensitivity in the emission of a photostable luminescent radical, (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (PyBTM) doped into host αH-PyBTM molecular crystals. The magnetic field (0-14 T), temperature (4.2-20 K), and the doping concentration (0.1, 4, 10, and 22 wt%) dependence on the time-resolved emission were examined by measuring emission decays of the monomer and excimer. Quantum mechanical simulations on the decay curves disclosed the role of the magnetic field; it dominantly affects the spin sublevel population of radical dimers in the ground states. This situation is distinctly different from that in conventional closed-shell luminophores, where the magnetic field modulates their excited-state spin multiplicity. Namely, the spin degree of freedom of ground-state open-shell molecules is a new key for achieving magnetic-field-controlled molecular photofunctions.
Collapse
Affiliation(s)
- Shun Kimura
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Shojiro Kimura
- Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Ken Kato
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Yoshio Teki
- Division of Molecular Materials Science, Graduate School of Science, Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Hiroshi Nishihara
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Research Center for Science and Technology, Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Tetsuro Kusamoto
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- SOKENDAI (The Graduate University for Advanced Studies) Shonan Village, Hayama 240-0193 Kanagawa Japan
| |
Collapse
|
9
|
Zhao T, Han J, Duan P, Liu M. New Perspectives to Trigger and Modulate Circularly Polarized Luminescence of Complex and Aggregated Systems: Energy Transfer, Photon Upconversion, Charge Transfer, and Organic Radical. Acc Chem Res 2020; 53:1279-1292. [PMID: 32649172 DOI: 10.1021/acs.accounts.0c00112] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chiral functional materials with circularly polarized luminescence (CPL) have risen rapidly in recent years because of their fascinating characteristics and potential applications in various research fields. CPL refers to the differential spontaneous emission of left (L)- and right (R)-handed circularly polarized light upon photon or electron excitation. Generally, an outstanding CPL-active material needs to possess a high luminescence dissymmetry factor (glum) (defined as 2(IL - IR)/(IL + IR) where I is the emission intensity), which is between -2 and +2. Although the exciting development in CPL-active materials was achieved, the modulation of CPL signs is still a challenge. For small organic systems, a relatively small glum value, one of the key parameters of CPL, limits their practical applications. Searching for efficient approaches for amplifying glum is important. Therefore, over the past decades, besides optimizing the structure of small molecules, many other strategies to obtain efficient CPL-active materials have been developed. For instance, self-assembly has been well demonstrated as an effective approach to amplify the supramolecular chirality as well as the glum values. On the other hand, chiral liquid crystals (CLCs), which are capable of selective reflection of left- and right-handed circularly polarized light, also to serve as a host matrix for endowing guest emitters with CPL activity and high glum values. However, self-assembly focuses on modulating the conformation and spatial arrangement of chiral emitters. And the CPL of a luminophore-doped CLC matrix depends on the helix pitch and band gap positions. Lately, novel photophysical approaches to modulate CPL signs have gradually emerged.In this Account, we discuss the recent progress of excited-state-regulation involved CPL-active materials. The emergence, amplification, and inversion of CPL can be adjusted through regulation of the excited state of chiral emitters. For example, Förster resonance energy transfer (FRET) can amplify the glum values of chiral energy acceptors in chiral supramolecular assemblies. By combining the concepts of photon upconversion and CPL, high-energy upconverted circularly polarized emission was achieved under excitation of low-energy light, accompanied by an amplified glum. In addition, the organic systems with unpaired electrons, i.e., charge transfer (CT) system and open-shell π-radical, show favorable CPL properties, which can be flexibly tuned with an applied magnetic field. It should be noted that these photophysical process are associated with the excited state of chiral emitters. So far, while the main focus is on the regulation of the molecular and supramolecular nanostructures, direct regulation of the excited state of the chiral system will serve as a new platform to understand and regulate the CPL activity and will be helpful to develop smart chiroptical materials.
Collapse
Affiliation(s)
- Tonghan Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Minghua Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No.2, ZhongGuanCun BeiYiJie, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Mayorga‐Burrezo P, Jiménez VG, Blasi D, Parella T, Ratera I, Campaña AG, Veciana J. An Enantiopure Propeller‐Like Trityl‐Brominated Radical: Bringing Together a High Racemization Barrier and an Efficient Circularly Polarized Luminescent Magnetic Emitter. Chemistry 2020; 26:3776-3781. [DOI: 10.1002/chem.202000098] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Paula Mayorga‐Burrezo
- Department of Molecular Nanoscience and Organic MaterialsInstitut de Ciència de Materials de Barcelona (ICMAB)/CIBER-BBN Campus Universitari de Bellaterra 08193 Cerdanyola, Barcelona Spain
| | - Vicente G. Jiménez
- Department of Organic ChemistryUniversity of Granada (UGR) C. U. Fuentenueva 18071 Granada Spain
| | - Davide Blasi
- Department of Molecular Nanoscience and Organic MaterialsInstitut de Ciència de Materials de Barcelona (ICMAB)/CIBER-BBN Campus Universitari de Bellaterra 08193 Cerdanyola, Barcelona Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica NuclearUniversitat Autònoma de Barcelona Campus Universitari de Bellaterra 08193 Cerdanyola, Barcelona Spain
| | - Imma Ratera
- Department of Molecular Nanoscience and Organic MaterialsInstitut de Ciència de Materials de Barcelona (ICMAB)/CIBER-BBN Campus Universitari de Bellaterra 08193 Cerdanyola, Barcelona Spain
| | - Araceli G. Campaña
- Department of Organic ChemistryUniversity of Granada (UGR) C. U. Fuentenueva 18071 Granada Spain
| | - Jaume Veciana
- Department of Molecular Nanoscience and Organic MaterialsInstitut de Ciència de Materials de Barcelona (ICMAB)/CIBER-BBN Campus Universitari de Bellaterra 08193 Cerdanyola, Barcelona Spain
| |
Collapse
|