1
|
Abstract
Super-resolution imaging techniques that overcome the diffraction limit of light have gained wide popularity for visualizing cellular structures with nanometric resolution. Following the pace of hardware developments, the availability of new fluorescent probes with superior properties is becoming ever more important. In this context, fluorescent nanoparticles (NPs) have attracted increasing attention as bright and photostable probes that address many shortcomings of traditional fluorescent probes. The use of NPs for super-resolution imaging is a recent development and this provides the focus for the current review. We give an overview of different super-resolution methods and discuss their demands on the properties of fluorescent NPs. We then review in detail the features, strengths, and weaknesses of each NP class to support these applications and provide examples from their utilization in various biological systems. Moreover, we provide an outlook on the future of the field and opportunities in material science for the development of probes for multiplexed subcellular imaging with nanometric resolution.
Collapse
Affiliation(s)
- Wei Li
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | | | - Bingfu Lei
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Yingliang Liu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
2
|
Ma Y, Shen J, Zhao J, Li J, Liu S, Liu C, Wei J, Liu S, Zhao Q. Multicolor Zinc(II)‐Coordinated Hydrazone‐Based Bistable Photoswitches for Rewritable Transparent Luminescent Labels. Angew Chem Int Ed Engl 2022; 61:e202202655. [DOI: 10.1002/anie.202202655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yun Ma
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Jiandong Shen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Jufu Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Jiangang Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Shanying Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Chenyuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Juan Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
- College of Electronic and Optical Engineering and Microelectronics & College of Flexible Electronics (Future Technology) Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 P. R. China
| |
Collapse
|
3
|
Mehdi M, Jiang W, Zeng Q, Thebo KH, Kim IS, Khatri Z, Wang H, Hu J, Zhang KQ. Regenerated Silk Nanofibers for Robust and Cyclic Adsorption-Desorption on Anionic Dyes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6376-6386. [PMID: 35561306 DOI: 10.1021/acs.langmuir.2c00314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, adsorption-based membranes have been widely investigated to remove and separate textile pollutants. However, cyclic adsorption-desorption to reuse a single adsorbent and clear scientific evidence for the adsorption-desorption mechanism remains challenging. Herein, silk nanofibers were used to assess the adsorption potential for the typical anionic dyes from an aqueous medium, and they show great potential toward the removal of acid dyes from the aqueous solution with an adsorption rate of ∼98% in a 1 min interaction. Further, we measured the filtration proficiency of a silk nanofiber membrane in order to propose a continuous mechanism for the removal of acid blue dye, and a complete rejection was observed with a maximum permeability rate of ∼360 ± 5 L·m-2·h-1. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy studies demonstrate that this fast adsorption occurs due to multiple interactions between the dye molecule and the adsorbent substrate. The as-prepared material also shows remarkable results in desorption. A 50-time cycle exhibits complete adsorption and desorption ability, which not only facilitates high removal aptitude but also produces less solid waste than other conventional adsorbents. Additionally, fluorescent 2-bromo-2-methyl-propionic acid (abbreviated as EtOxPY)-silk nanofibers can facilitate to illustrate a clear adsorption and desorption mechanism. Therefore, the above-prescribed results make electrospun silk nanofibers a suitable choice for removing anionic dyes in real-time applications.
Collapse
Affiliation(s)
- Mujahid Mehdi
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Wangkai Jiang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Qingping Zeng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences, 2 Wenhua Road, Shenyang 110016, China
| | - Ick-Soo Kim
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano Prefecture 386-8567, Japan
| | - Zeeshan Khatri
- Center of Excellence in Nanotechnology and Materials, Mehran University of Engineering and Technology, Jamshoro 76060, Pakistan
| | - Huifen Wang
- Shanghai Institute of Spacecraft Equipment, 251 Huaning Road, Minhang, Shanghai 200240, China
| | - Jianchen Hu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Zhang H, Qi Y, Zhao X, Li M, Wang R, Cheng H, Li Z, Guo H, Li Z. Dithienylethene-Bridged Fluoroquinolone Derivatives for Imaging-Guided Reversible Control of Antibacterial Activity. J Org Chem 2022; 87:7446-7455. [PMID: 35608344 DOI: 10.1021/acs.joc.2c00797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emerging field of photopharmacology has offered a promising alternative to guard against the bacterial resistance by effectively avoiding antibiotic accumulation in the body or environment. However, the degradation, toxicity, and thermal reversibility have always been an ongoing concern for potential applications of azobenzene-based photopharmacology. Developing novel photopharmacological agents based on a more matched switch is highly in demand and remains a major challenge. Herein, two novel dithienylethene-bridged dual-fluoroquinolone derivatives have been developed by introducing two fluoroquinolone drugs into both ends of the dithienylethene (DTE) switch, in which the fluoroquinolone acts as a fluorophore except for the pharmacodynamic component. For comparison, two monofluoroquinolone-DTE hybrids were also prepared by a similar strategy. As expected, these resultant DTE-based antibacterial agents displayed efficient photochromism and fluorescence switching behavior in dimethyl sulfoxide. Moreover, improved antibacterial activities compared to those of monofluoroquinolone derivatives and a maximum fourfold active difference against Escherichia coli (E. coli) for open and closed isomers and photoswitchable bacterial imaging for Staphylococcus aureus and E. coli were observed. The molecular docking to DNA gyrase gave a rationale for the discrepancies in antibacterial activity for both isomers. Therefore, these fluoroquinolone derivatives can act as interesting imaging-guided photopharmacological agents for further in vivo studies.
Collapse
Affiliation(s)
- Haining Zhang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yueheng Qi
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Xinru Zhao
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Manman Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Ruyue Wang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Huiping Cheng
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Zhuo Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Hui Guo
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Ziyong Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| |
Collapse
|
5
|
Yang R, Ren X, Mei L, Pan G, Li XZ, Wu Z, Zhang S, Ma W, Yu W, Fang HH, Li C, Zhu MQ, Hu Z, Sun T, Xu B, Tian W. Reversible Three-Color Fluorescence Switching of an Organic Molecule in the Solid State via "Pump-Trigger" Optical Manipulation. Angew Chem Int Ed Engl 2022; 61:e202117158. [PMID: 35102683 DOI: 10.1002/anie.202117158] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 12/19/2022]
Abstract
In photoswitches that undergo fluorescence switching upon ultraviolet irradiation, photoluminescence and photoisomerization often occur simultaneously, leading to unstable fluorescence properties. Here, we successfully demonstrated reversible solid-state triple fluorescence switching through "Pump-Trigger" multiphoton manipulation. A novel fluorescence photoswitch, BOSA-SP, achieved green, yellow, and red fluorescence under excitation by pump light and isomerization induced by trigger light. The energy ranges of photoexcitation and photoisomerization did not overlap, enabling appropriate selection of the multiphoton light for "pump" and "trigger" photoswitching, respectively. Additionally, the large free volume of the spiropyran (SP) moiety in the solid state promoted reversible photoisomerization. Switching between "pump" and "trigger" light is useful for three-color tunable switching cell imaging, which can be exploited in programmable fluorescence switching. Furthermore, we exploited reversible dual-fluorescence switching in a single molecular system to successfully achieve two-color super-resolution imaging.
Collapse
Affiliation(s)
- Runqing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| | - Xue Ren
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China.,Department of Oncological Gynecology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Lijun Mei
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guocui Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| | - Xiao-Ze Li
- State Key Laboratory of Precision Measurement Technology & Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Zhiyuan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| | - Song Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| | - Wenyue Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| | - Weili Yu
- GPL Photonic Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Hong-Hua Fang
- State Key Laboratory of Precision Measurement Technology & Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| |
Collapse
|
6
|
Ma Y, Shen J, Zhao J, Li J, Liu S, Liu C, Wei J, Liu S, Zhao Q. Multicolor Zinc(II)‐coordinated Hydrazone‐based Bistable Photoswitches for Rewritable Transparent Luminescent Labels. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yun Ma
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Jiandong Shen
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Jufu Zhao
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Jiangang Li
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Shanying Liu
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Chenyuan Liu
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Juan Wei
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Shujuan Liu
- Nanjing University of Posts and Telecommunications Institute of Advanced Materials 9 Wenyuan Road 210023 Nanjing CHINA
| | - Qiang Zhao
- Nanjing University of Posts and Telecommunications 9 Wenyuan Road 210023 Nanjing CHINA
| |
Collapse
|
7
|
Optical, thermal and dielectric properties of Copper Oxide (CuO)/ chitosan (CS)/ Polyethylene oxide (PEO) blends. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Büllmann SM, Kolmar T, Zorn NF, Zaumseil J, Jäschke A. A DNA-Based Two-Component Excitonic Switch Utilizing High-Performance Diarylethenes. Angew Chem Int Ed Engl 2022; 61:e202117735. [PMID: 35076154 PMCID: PMC9305942 DOI: 10.1002/anie.202117735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 11/13/2022]
Abstract
Nucleosidic diarylethenes (DAEs) are an emerging class of photochromes but have rarely been used in materials science. Here, we have developed doubly methylated DAEs derived from 2'-deoxyuridine with high thermal stability and fatigue resistance. These new photoswitches not only outperform their predecessors but also rival classical non-nucleosidic DAEs. To demonstrate the utility of these new DAEs, we have designed an all-optical excitonic switch consisting of two oligonucleotides: one strand containing a fluorogenic double-methylated 2'-deoxyuridine as a fluorescence donor and the other a tricyclic cytidine (tC) as acceptor, which together form a highly efficient conditional Förster-Resonance-Energy-Transfer (FRET) pair. The system was operated in liquid and solid phases and showed both strong distance- and orientation-dependent photochromic FRET. The superior ON/OFF contrast was maintained over up to 100 switching cycles, with no detectable fatigue.
Collapse
Affiliation(s)
- Simon M. Büllmann
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Theresa Kolmar
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Nicolas F. Zorn
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Jana Zaumseil
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| |
Collapse
|
9
|
Yang R, Ren X, Mei L, Pan G, Li X, Wu Z, Zhang S, Ma W, Yu W, Fang H, Li C, Zhu M, Hu Z, Sun T, Xu B, Tian W. Reversible Three‐Color Fluorescence Switching of an Organic Molecule in the Solid State via “Pump–Trigger” Optical Manipulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Runqing Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Xue Ren
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
- Department of Oncological Gynecology The First Hospital of Jilin University Changchun 130012 China
| | - Lijun Mei
- Wuhan National Laboratory for Optoelectronics (WNLO) School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
| | - Guocui Pan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Xiao‐Ze Li
- State Key Laboratory of Precision Measurement Technology & Instruments Department of Precision Instrument Tsinghua University Beijing 100084 China
| | - Zhiyuan Wu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Song Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Wenyue Ma
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Weili Yu
- GPL Photonic Laboratory State Key Laboratory of Applied Optics Changchun Institute of Optics Fine Mechanics and Physics Chinese Academy of Sciences Changchun 130033 China
| | - Hong‐Hua Fang
- State Key Laboratory of Precision Measurement Technology & Instruments Department of Precision Instrument Tsinghua University Beijing 100084 China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics (WNLO) School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
| | - Ming‐Qiang Zhu
- Wuhan National Laboratory for Optoelectronics (WNLO) School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education The First Hospital of Jilin University Changchun 130061 China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education The First Hospital of Jilin University Changchun 130061 China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| |
Collapse
|
10
|
Büllmann SM, Kolmar T, Zorn NF, Zaumseil J, Jäschke A. Ein DNA‐basierter exzitonischer Zweikomponenten‐Schalter auf der Grundlage von Hochleistungs‐Diarylethenen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Simon M. Büllmann
- Institut für Pharmazie und Molekulare Biotechnologie Universität Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Deutschland
| | - Theresa Kolmar
- Institut für Pharmazie und Molekulare Biotechnologie Universität Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Deutschland
| | - Nicolas F. Zorn
- Physikalisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Deutschland
| | - Jana Zaumseil
- Physikalisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Deutschland
| | - Andres Jäschke
- Institut für Pharmazie und Molekulare Biotechnologie Universität Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Deutschland
| |
Collapse
|
11
|
Villa M, Ceroni P, Fermi A. Tetrachromophoric Systems Based on Rigid Tetraphenylmethane (TPM) and Tetraphenylethylene (TPE) Scaffolds. Chempluschem 2022; 87:e202100558. [DOI: 10.1002/cplu.202100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Marco Villa
- Universita di Bologna Department of Chemistry "Giacomo Ciamician" ITALY
| | - Paola Ceroni
- Universita di Bologna Depatment of Chemistry "G. Ciamician" ITALY
| | - Andrea Fermi
- Universita degli Studi di Bologna Dipartimento di Chimica Giacomo Ciamician Dipartimento di Chimica "Giacomo Ciamician" via Selmi 2 40126 Bologna ITALY
| |
Collapse
|
12
|
Shen D, Bai Y, Liu Y. Chemical Biology Toolbox to Visualize Protein Aggregation in Live Cells. Chembiochem 2021; 23:e202100443. [PMID: 34613660 DOI: 10.1002/cbic.202100443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/05/2021] [Indexed: 11/09/2022]
Abstract
Protein misfolding and aggregation is a complex biochemical process and has been associated with numerous human degenerative diseases. Developing novel chemical and biological tools and approaches to visualize aggregated proteins in live cells is in high demand for mechanistic studies, diagnostics, and therapeutics. In this review, we summarize the recent developments in the chemical biology toolbox applied to protein aggregation studies in live cells. These methods exploited fluorescent protein tags, fluorescent chemical tags, and small-molecule probes to visualize the protein-aggregation process, detect proteome stresses, and quantify the protein homeostasis network capacity. Inspired by these seminal works, we have generalized design principles for the development of new detection methods and probes in the future that will illuminate this important biological process.
Collapse
Affiliation(s)
- Di Shen
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Yulong Bai
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| |
Collapse
|
13
|
Sample HC, Emandi G, Twamley B, Grover N, Khurana B, Sol V, Senge MO. Synthesis and Properties of BODIPY Appended Tetraphenylethylene Scaffolds as Photoactive Arrays. European J Org Chem 2021; 2021:4136-4143. [PMID: 34588920 PMCID: PMC8457078 DOI: 10.1002/ejoc.202100629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/06/2021] [Indexed: 12/29/2022]
Abstract
Tetraphenylethylene (TPE) and its derivatives exhibit excellent aggregation-induced emission (AIE) properties. The TPE unit is easily accessible, and many functional groups can be introduced in a facile manner to yield effective luminescent materials in both solution and the solid-state. It is because of this, several TPE-based compounds have been developed and applied in many areas, such as OLEDs and chemical sensors. Boron dipyrromethenes (BODIPYs) are a class of pyrrolic fluorophore of great interest with myriad application in both material science and biomedical applications. Through the combination of Pd-catalyzed cross-coupling reactions and traditional dipyrromethene chemistry, we present the syntheses of novel tetra-BODIPY-appended TPE derivatives with different distances between the TPE and BODIPY cores. The TPE-BODIPY arrays 6 and 9 show vastly differing AIE properties in THF/H2O systems, with 9 exhibiting dual-AIE, along with both conjugates being found to produce singlet oxygen (1O2). We presume the synthesized BODIPY-appended TPE scaffolds to be utilized for potential applications in the fields of light-emitting systems and theranostics.
Collapse
Affiliation(s)
- Harry C. Sample
- School of ChemistryTrinity College DublinThe University of DublinTrinity Biomedical Sciences Institute152–160 Pearse StreetDublin 2Ireland
| | - Ganapathi Emandi
- School of ChemistryTrinity College DublinThe University of DublinTrinity Biomedical Sciences Institute152–160 Pearse StreetDublin 2Ireland
| | - Brendan Twamley
- School of ChemistryTrinity College DublinThe University of DublinDublin 2Ireland
| | - Nitika Grover
- School of ChemistryTrinity College DublinThe University of DublinTrinity Biomedical Sciences Institute152–160 Pearse StreetDublin 2Ireland
| | - Bhavya Khurana
- School of ChemistryTrinity College DublinThe University of DublinTrinity Biomedical Sciences Institute152–160 Pearse StreetDublin 2Ireland
- Université de LimogesLaboratoire PEIRENE, EA 75008700LimogesFrance
| | - Vincent Sol
- Université de LimogesLaboratoire PEIRENE, EA 75008700LimogesFrance
| | - Mathias O. Senge
- School of ChemistryTrinity College DublinThe University of DublinTrinity Biomedical Sciences Institute152–160 Pearse StreetDublin 2Ireland
- Institute for Advanced Study (TUM-IAS)Technical University of MunichFocus Group – Molecular and Interfacial Engineering of Organic NanosystemsLichtenbergstrasse 2a85748München GarchigGermany
| |
Collapse
|
14
|
Chattapadhyay D, Mondal S, Kumar S, Haldar D. Topology-Controlled AIEE of Iminocoumarin Luminophores. Chem Asian J 2021; 16:2723-2728. [PMID: 34329536 DOI: 10.1002/asia.202100590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/28/2021] [Indexed: 11/12/2022]
Abstract
Aggregation-induced emission enhancement (AIEE) is an unusual phenomenon where luminophores show a higher photoluminescence efficiency in the aggregated and solid state. We report the design and synthesis of a series of luminophores 1-4 with imine functionality at 6 position of coumarin and studied their AIE propensities on self-assembly. The effect of the topology of the phenolic hydroxyl group on the emission behaviour of the luminophores has been investigated. The imines show significant solvatochromism with high emission in non-polar solvents, whereas the emission gets quenched in the polar solvent. The fluorescence in the toluene-hexane mixture arises due to the aggregation of fluorophores and falls under the category of AIEE. Not only the solution state emission of the isomeric iminocoumarin luminophores is notably varied, but also their solid-state emission found to be significantly different from each other. Moreover, the iminocoumarin 1 selectively recognizes Fe(III) over Fe(II) with a prominent color change. In situ oxidation of Fe(II) with H2 O2 exhibits the same effect like Fe(III) and developed a chemical combinational logic gate.
Collapse
Affiliation(s)
- Deepta Chattapadhyay
- Department of Chemical Sciences and, Centre for Advance Functional Materials and, Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Sahabaj Mondal
- Department of Chemical Sciences and, Centre for Advance Functional Materials and, Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Santosh Kumar
- Department of Chemical Sciences and, Centre for Advance Functional Materials and, Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Debasish Haldar
- Department of Chemical Sciences and, Centre for Advance Functional Materials and, Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
15
|
Chen S, Chen L, Cai Y, Zhu WH. Photoswitchable Fluorescent Self-Assembled Metallacycles with High Photostability. Chemistry 2021; 27:5240-5245. [PMID: 33442888 DOI: 10.1002/chem.202005184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 11/07/2022]
Abstract
In this study, photoswitchable fluorescent supramolecular metallacycles with high fatigue-resistance have been constructed by coordination-driven self-assembly by using bithienylethene with dipyridyl units (BTE) as a coordination donor and a fluorescent di-platinum(II) (Pt-F) as a coordination acceptor. The photo-triggered reversible transformation between the ring-open and ring-closed form of the metallacycles was confirmed by 1 H NMR, 31 P NMR, and UV/Vis spectroscopy. This unique property enabled a reversible noninvasive "off-on" switching of fluorescence through efficient Förster resonance energy transfer (FRET). Importantly, the metallacycles remained structurally intact after up to 10 photoswitching cycles. The photoresponsive property and exceptional photostability of the metallacycles posit their potential promising application in optical switching, image storage, and super-resolution microscopy.
Collapse
Affiliation(s)
- Shangjun Chen
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Lijun Chen
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, P. R. China
| | - Yunsong Cai
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Research Laboratory of Precision Chemistry, and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Research Laboratory of Precision Chemistry, and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
16
|
Yang R, Jiao Y, Wang B, Xu B, Tian W. Solid-State Reversible Dual Fluorescent Switches for Multimodality Optical Memory. J Phys Chem Lett 2021; 12:1290-1294. [PMID: 33497238 DOI: 10.1021/acs.jpclett.0c03774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorescent photoswitches are highly attractive, because they hold great promises for photonic devices and imaging. However, a limited number of reversible switches with a response to light have been achieved in the solid state. Here, we report reversible dual fluorescent photoswitching characteristics in the solid state of spiropyran (SP)-functionalized tetraphenylethene (TPE) derivatives. These photoswitches exhibit two distinct and selectively addressable states, a cyan fluorescence and a red fluorescence, which can be conveyed into each other in a reversible feature upon irradiation with alternating UV and visible light. Detailed spectroscopic and theoretical studies suggest that the nonplanar molecular conformation of TPE moieties leads to large free volumes, which facilitates the reversible photoisomerization of SP. The excellent reversibility and high-contrast fluorescence of solid-state photoswitches enable great applications in multimodality anticounterfeiting and optical writing and erasing fluorescent devices.
Collapse
Affiliation(s)
- Runqing Yang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Yang Jiao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Boyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| |
Collapse
|
17
|
Liu Y, Peng Q, Li Y, Hou H, Li K. A simple strategy for constructing acylhydrazone photochromic system with visible color/emission change and its application in photo-patterning. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Xie Y, Zhou C, Zhang S, Yan L, Wu X, Shan Y. A Coumarin‐Based Fluorescent Probe for the Detection of Hypochlorite Ions and Its Applications in Test Paper and Cell Imaging. ChemistrySelect 2020. [DOI: 10.1002/slct.202002258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ya Xie
- College of Chemistry and BioengineeringGuilin University of Technology Guilin Guangxi 541006 P.R. China
| | - Cuiping Zhou
- College of Chemistry and BioengineeringGuilin University of Technology Guilin Guangxi 541006 P.R. China
| | - Shiqing Zhang
- College of Chemistry and BioengineeringGuilin University of Technology Guilin Guangxi 541006 P.R. China
| | - Liqiang Yan
- College of Chemistry and BioengineeringGuilin University of Technology Guilin Guangxi 541006 P.R. China
| | - Xiongzhi Wu
- College of Chemistry and BioengineeringGuilin University of Technology Guilin Guangxi 541006 P.R. China
| | - Yang Shan
- Hunan Agricultural Product Processing InstituteHunan Academy of Agricultural Sciences Changsha 410125 P.R. China
| |
Collapse
|