1
|
Tang JH, Luo M, Tsao W, Waters EA, Parigi G, Luchinat C, Meade TJ. MR Imaging Reveals Dynamic Aggregation of Multivalent Glycoconjugates in Aqueous Solution. Inorg Chem 2024. [PMID: 39680369 DOI: 10.1021/acs.inorgchem.4c03878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Glycoconjugates forming from the conjugation of carbohydrates to other biomolecules, such as proteins, lipids, or other carbohydrates, are essential components of mammalian cells and are involved in numerous biological processes. Due to the capability of sugars to form multiple hydrogen bonds, many synthetic glycoconjugates are desirable biocompatible platforms for imaging, diagnostics, drugs, and supramolecular self-assemblies. Herein, we present a multimeric galactose functionalized paramagnetic gadolinium (Gd(III)) chelate that displays spontaneous dynamic aggregation in aqueous conditions. The dynamic aggregation of the Gd(III) complex was shown by the concentration-dependent magnetic resonance (MR) relaxation measurements, nuclear magnetic resonance dispersion (NMRD) analysis, and dynamic light scattering (DLS). Notably, these data showed a nonlinear relationship between magnetic resonance relaxation rate and concentrations (0.03-1.35 mM), and a large DLS hydrodynamic radius was observed in the high-concentration solutions. MR phantom images were acquired to visualize real-time dynamic aggregation behaviors in aqueous solutions. The in situ visualization of the dynamic self-assembling process of multivalent glycoconjugates has rarely been reported.
Collapse
Affiliation(s)
- Jian-Hong Tang
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Minrui Luo
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Wilhelmina Tsao
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Emily Alexandria Waters
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Giacomo Parigi
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Claudio Luchinat
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Thomas J Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Tang BJH, Li H, Yuan C, Parigi G, Luchinat C, Meade TJ. Molecular Engineering of Self-Immolative Bioresponsive MR Probes. J Am Chem Soc 2023; 145:10045-10050. [PMID: 37116079 PMCID: PMC10769484 DOI: 10.1021/jacs.2c13672] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Real-time detection of bio-event in whole animals provides essential information for understanding biological and therapeutic processes. Magnetic resonance (MR) imaging represents a non-invasive approach to generating three-dimensional anatomic images with high spatial-temporal resolution and unlimited depth penetration. We have developed several self-immolative enzyme-activatable agents that provide excellent in vivo contrast and function as gene expression reporters. Here, we describe a vast improvement in image contrast over our previous generations of these bioresponsive agents based on a new pyridyl-carbamate Gd(III) complex. The pyridyl-carbamate-based agent has a very low MR relaxivity in the "off-state" (r1 = 1.8 mM-1 s-1 at 1.41 T). However, upon enzymatic processing, it generates a significantly higher relaxivity with a Δr1 = 106% versus Δr1 ∼ 20% reported previously. Single X-ray crystal and nuclear magnetic relaxation dispersion analyses offer mechanistic insights regarding MR signal enhancement at the molecular scale. This work demonstrates a pyridyl-carbamate-based self-immolative molecular platform for the construction of enzymatic bio-responsive MR agents, which can be adapted to a wide range of other targets for exploring stimuli-responsive materials and biomedical applications.
Collapse
Affiliation(s)
- bJian-Hong Tang
- Departments of Chemistry; Molecular Biosciences; Neurobiology and Physiology; and Radiology, Northwestern University, Evanston, IL 60208
| | - Hao Li
- Departments of Chemistry; Molecular Biosciences; Neurobiology and Physiology; and Radiology, Northwestern University, Evanston, IL 60208
| | - Chaonan Yuan
- Departments of Chemistry; Molecular Biosciences; Neurobiology and Physiology; and Radiology, Northwestern University, Evanston, IL 60208
| | - Giacomo Parigi
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Thomas J. Meade
- Departments of Chemistry; Molecular Biosciences; Neurobiology and Physiology; and Radiology, Northwestern University, Evanston, IL 60208
| |
Collapse
|
3
|
Yao Y, Ding P, Yan C, Tao Y, Peng B, Liu W, Wang J, Cohen Stuart MA, Guo Z. Fluorescent Probes Based on AIEgen-Mediated Polyelectrolyte Assemblies for Manipulating Intramolecular Motion and Magnetic Relaxivity. Angew Chem Int Ed Engl 2023; 62:e202218983. [PMID: 36700414 DOI: 10.1002/anie.202218983] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Uniting photothermal therapy (PTT) with magnetic resonance imaging (MRI) holds great potential in nanotheranostics. However, the extensively utilized hydrophobicity-driven assembling strategy not only restricts the intramolecular motion-induced PTT, but also blocks the interactions between MR agents and water. Herein, we report an aggregation-induced emission luminogen (AIEgen)-mediated polyelectrolyte nanoassemblies (APN) strategy, which bestows a unique "soft" inner microenvironment with good water permeability. Femtosecond transient spectra verify that APN well activates intramolecular motion from the twisted intramolecular charge transfer process. This de novo APN strategy uniting synergistically three factors (rotational motion, local motion, and hydration number) brings out high MR relaxivity. For the first time, APN strategy has successfully modulated both intramolecular motion and magnetic relaxivity, achieving fluorescence lifetime imaging of tumor spheroids and spatio-temporal MRI-guided high-efficient PTT.
Collapse
Affiliation(s)
- Yongkang Yao
- Department Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Ding
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chenxu Yan
- Department Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yining Tao
- Department Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bo Peng
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 200237, China
| | - Weimin Liu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 200237, China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Martien A Cohen Stuart
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiqian Guo
- Department Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
4
|
Amarsy I, Papot S, Gasser G. Stimuli‐Responsive Metal Complexes for Biomedical Applications. Angew Chem Int Ed Engl 2022; 61:e202205900. [DOI: 10.1002/anie.202205900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ivanna Amarsy
- Chimie ParisTech PSL University, CNRS Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Sébastien Papot
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) Université de Poitiers, CNRS Equipe Labellisée Ligue Contre le Cancer 4 rue Michel Brunet, TSA 51106 86073 Poitiers France
| | - Gilles Gasser
- Chimie ParisTech PSL University, CNRS Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France
| |
Collapse
|
5
|
Yun J, Baldini M, Chowdhury R, Mukherjee A. Designing Protein-Based Probes for Sensing Biological Analytes with Magnetic Resonance Imaging. ANALYSIS & SENSING 2022; 2:e202200019. [PMID: 37409177 PMCID: PMC10321474 DOI: 10.1002/anse.202200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Genetically encoded sensors provide unique advantages for monitoring biological analytes with molecular and cellular-level specificity. While sensors derived from fluorescent proteins represent staple tools in biological imaging, these probes are limited to optically accessible preparations owing to physical curbs on light penetration. In contrast to optical methods, magnetic resonance imaging (MRI) may be used to noninvasively look inside intact organisms at any arbitrary depth and over large fields of view. These capabilities have spurred the development of innovative methods to connect MRI readouts with biological targets using protein-based probes that are in principle genetically encodable. Here, we highlight the state-of-the-art in MRI-based biomolecular sensors, focusing on their physical mechanisms, quantitative characteristics, and biological applications. We also describe how innovations in reporter gene technology are creating new opportunities to engineer MRI sensors that are sensitive to dilute biological targets.
Collapse
Affiliation(s)
- Jason Yun
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Michelle Baldini
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Rochishnu Chowdhury
- Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Arnab Mukherjee
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Center for BioEngineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
6
|
Amarsy I, Papot S, Gasser G. Stimuli‐Responsive Metal Complexes for Biomedical Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ivanna Amarsy
- Chimie ParisTech - PSL: Ecole nationale superieure de chimie de Paris PSL University FRANCE
| | - Sébastien Papot
- Université de Poitiers: Universite de Poitiers Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP) FRANCE
| | - Gilles Gasser
- Universite PSL Chimie ParisTech 11, rue Pierre et Marie Curie 75005 Paris FRANCE
| |
Collapse
|
7
|
Wang H, Cleary MB, Lewis LC, Bacon JW, Caravan P, Shafaat HS, Gale EM. Enzyme Control Over Ferric Iron Magnetostructural Properties. Angew Chem Int Ed Engl 2022; 61:e202114019. [PMID: 34814231 PMCID: PMC8935392 DOI: 10.1002/anie.202114019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 01/19/2023]
Abstract
Fe3+ complexes in aqueous solution can exist as discrete mononuclear species or multinuclear magnetically coupled species. Stimuli-driven change to Fe3+ speciation represents a powerful mechanistic basis for magnetic resonance sensor technology, but ligand design strategies to exert precision control of aqueous Fe3+ magnetostructural properties are entirely underexplored. In pursuit of this objective, we rationally designed a ligand to strongly favor a dinuclear μ-oxo-bridged and antiferromagnetically coupled complex, but which undergoes carboxylesterase mediated transformation to a mononuclear high-spin Fe3+ chelate resulting in substantial T1 -relaxivity increase. The data communicated demonstrate proof of concept for a novel and effective strategy to exert biochemical control over aqueous Fe3+ magnetic, structural, and relaxometric properties.
Collapse
Affiliation(s)
- Huan Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/ Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Michael B. Cleary
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/ Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Luke C. Lewis
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Jeffrey W. Bacon
- Department of Chemistry, Boston University, Boston, Massachusetts, 02215, United States
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/ Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States,Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital/ Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Hannah S. Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/ Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States,Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital/ Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
8
|
Wang H, Cleary MB, Lewis LC, Bacon JW, Caravan P, Shafaat HS, Gale EM. Enzyme Control Over Ferric Iron Magnetostructural Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huan Wang
- Athinoula A. Martinos Center for Biomedical Imaging
- Institute for Innovation in Imaging Department of Radiology Massachusetts General Hospital/Harvard Medical School 149 Thirteenth Street Charlestown MA 02129 USA
| | - Michael B. Cleary
- Athinoula A. Martinos Center for Biomedical Imaging
- Institute for Innovation in Imaging Department of Radiology Massachusetts General Hospital/Harvard Medical School 149 Thirteenth Street Charlestown MA 02129 USA
| | - Luke C. Lewis
- Department of Chemistry and Biochemistry The Ohio State University Columbus OH 43210 USA
| | | | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging
- Institute for Innovation in Imaging Department of Radiology Massachusetts General Hospital/Harvard Medical School 149 Thirteenth Street Charlestown MA 02129 USA
| | - Hannah S. Shafaat
- Department of Chemistry and Biochemistry The Ohio State University Columbus OH 43210 USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging
- Institute for Innovation in Imaging Department of Radiology Massachusetts General Hospital/Harvard Medical School 149 Thirteenth Street Charlestown MA 02129 USA
| |
Collapse
|
9
|
Liu D, Zhang Z, Chen A, Zhang P. A turn on fluorescent assay for real time determination of β-galactosidase and its application in living cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120345. [PMID: 34492512 DOI: 10.1016/j.saa.2021.120345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
In recent years, fluorescent probes based on chemical reactions have been widely investigated as a powerful and noninvasive method for the diagnosis of diseases. β-Galactosidase (β-gal), a typical lysosomal glycosidase, over expressed in senescent cells and primary ovarian cancer cells, which has been considered as an important biomarker cell senescence and primary ovarian cancers. Fluorescent probes for the determination of β-gal provide an excellent choice for visualization of cell senescence. In this work, a turn on fluorescent probe (HBT-gal) for β-gal activity was developed based on the enzymatic hydrolysis of glycosidic bonds. HBT-gal showed little fluorescence in aqueous buffer excited at 415 nm, while emitted green fluorescence centered at ∼ 492 nm upon incubated with β-gal. The sensing scheme showed high selectivity and sensitivity for β-gal activity with a limit of detection calculated as low as 0.19 mU/mL. Moreover, HBT-gal was successfully applied to image β-gal activity in senescent Hep G2 cells treated with H2O2. Therefore, probe HBT-gal demonstrated a potential usage for the determination of cell senescence using β-gal as a biomarker.
Collapse
Affiliation(s)
- Dan Liu
- College of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000 PR China.
| | - Zixuan Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Anying Chen
- College of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000 PR China
| | - Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
10
|
González-Gualda E, Baker AG, Fruk L, Muñoz-Espín D. A guide to assessing cellular senescence in vitro and in vivo. FEBS J 2021; 288:56-80. [PMID: 32961620 DOI: 10.1111/febs.15570] [Citation(s) in RCA: 300] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Cellular senescence is a physiological mechanism whereby a proliferating cell undergoes a stable cell cycle arrest upon damage or stress and elicits a secretory phenotype. This highly dynamic and regulated cellular state plays beneficial roles in physiology, such as during embryonic development and wound healing, but it can also result in antagonistic effects in age-related pathologies, degenerative disorders, ageing and cancer. In an effort to better identify this complex state, and given that a universal marker has yet to be identified, a general set of hallmarks describing senescence has been established. However, as the senescent programme becomes more defined, further complexities, including phenotype heterogeneity, have emerged. This significantly complicates the recognition and evaluation of cellular senescence, especially within complex tissues and living organisms. To address these challenges, substantial efforts are currently being made towards the discovery of novel and more specific biomarkers, optimized combinatorial strategies and the development of emerging detection techniques. Here, we compile such advances and present a multifactorial guide to identify and assess cellular senescence in cell cultures, tissues and living organisms. The reliable assessment and identification of senescence is not only crucial for better understanding its underlying biology, but also imperative for the development of diagnostic and therapeutic strategies aimed at targeting senescence in the clinic.
Collapse
Affiliation(s)
- Estela González-Gualda
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Andrew G Baker
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Daniel Muñoz-Espín
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|