1
|
Huang J, You SY, Hu LZ, He YH, Guan Z. One-Pot Photocascade Catalysis: Access to Pyrrole Derivatives from N-Arylglycines and Morita-Baylis-Hillman (MBH) Acetates. Org Lett 2024; 26:10195-10200. [PMID: 39556041 DOI: 10.1021/acs.orglett.4c04176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The step-economical synthesis of pyrrole derivatives has posed a challenge in the field of N-heterocyclic chemistry. A novel photocascade catalytic radical SN2'-type reaction/radical addition/annulation sequence of MBH acetates provides a straightforward route to pyrrole derivatives by forming new C-C, C-N, and C═C bonds in one pot, using N-arylglycines as the α-arylaminomethyl radical precursors for double insertion.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Si-Yu You
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ling-Zhi Hu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Gall BK, Smith AK, Ferreira EM. Dearomative (3+2) Cycloadditions between Indoles and Vinyldiazo Species Enabled by a Red-Shifted Chromium Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202212187. [PMID: 36063422 PMCID: PMC9828771 DOI: 10.1002/anie.202212187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/12/2023]
Abstract
A direct dearomative photocatalyzed (3+2) cycloaddition between indoles and vinyldiazo reagents is described. The transformation is enabled by the development of a novel oxidizing CrIII photocatalyst, its specific reactivity attributed to increased absorptive properties over earlier Cr analogs and greater stability than Ru counterparts. A variety of fused indoline compounds are synthesized using this method, including densely functionalized ring systems that are feasible due to base-free conditions. Experimental insights corroborate a cycloaddition initiated by nucleophilic attack at C3 of the indole radical cation by the vinyldiazo species.
Collapse
Affiliation(s)
- Bradley K. Gall
- Department of ChemistryUniversity of GeorgiaAthensGA 30602USA
| | - Avery K. Smith
- Department of ChemistryUniversity of GeorgiaAthensGA 30602USA
| | | |
Collapse
|
3
|
Ye AH, Song XF, Chen ZM. Electrophilic Thiocyanation of Tryptamine Derivatives: Divergent Synthesis of SCN-Containing Indole Compounds. Chem Asian J 2022; 17:e202200802. [PMID: 36039929 DOI: 10.1002/asia.202200802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Indexed: 11/07/2022]
Abstract
A tandem dearomative electrophilic thiocyanation/cyclization/acylation of indoles was developed for the first time, which is enabled by acyl chloride. A variety of 3-SCN pyrroloindolines were obtained with moderate to excellent yields. Interestingly, replacement of acyl chloride with methanesulfonic acid, 2-SCN tryptamines were obtained using the same starting substrates and reagents. Furthermore, catalytic enantioselective manner of thiocyanation/cyclization/acylation reaction was also studied. An enantiomer self-disproportionation effect of 3-SCN pyrroloindolines was discovered. A series of chiral 3-SCN pyrroloindolines were obtained with high enantioselectivities.
Collapse
Affiliation(s)
- Ai-Hui Ye
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Xu-Feng Song
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Zhi-Min Chen
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, 800 Dongchuan RD. Minhang District, 200240, Shanghai, CHINA
| |
Collapse
|
4
|
Recent Advances in the Synthesis of Indolines via Dearomative Annulation of
N
‐acylindoles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Rao CN, Reissig HU. Samarium(II)‐Promoted Cyclizations of Non‐activated Indolyl Sulfinyl Imines to Polycyclic Tertiary Carbinamines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chintada Nageswara Rao
- Freie Universität Berlin: Freie Universitat Berlin Institut für Chemie und Biochemie 14195 Berlin GERMANY
| | - Hans-Ulrich Reissig
- Freie Universität Berlin Institut für Chemie und Biochemie Takustr. 3 14195 Berlin GERMANY
| |
Collapse
|
6
|
Zhang H, He J, Chen Y, Zhuang C, Jiang C, Xiao K, Su Z, Ren X, Wang T. Regio‐ and Stereoselective Cascade of β,γ‐Unsaturated Ketones by Dipeptided Phosphonium Salt Catalysis: Stereospecific Construction of Dihydrofuro‐Fused [2,3‐b] Skeletons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yayun Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212003 P. R. China
| | - Cheng Zhuang
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu 610064 P. R. China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang 212003 P. R. China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu 610064 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
7
|
Zhang H, He J, Chen Y, Zhuang C, Jiang C, Xiao K, Su Z, Ren X, Wang T. Regio- and Stereoselective Cascade of β,γ-Unsaturated Ketones by Dipeptided Phosphonium Salt Catalysis: Stereospecific Construction of Dihydrofuro-Fused [2,3-b] Skeletons. Angew Chem Int Ed Engl 2021; 60:19860-19870. [PMID: 34213051 DOI: 10.1002/anie.202106046] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Chiral (dihydro)furo-fused heterocycles are significant structural motifs in numerous natural products, functional materials and pharmaceuticals. Therefore, developing efficient methods for preparing compounds with these privileged scaffolds is an important endeavor in synthetic chemistry. Herein, we develop an effective, modular method by a dipeptide-phosphonium salt-catalyzed regio- and stereoselective cascade reaction of readily available linear β,γ-unsaturated ketones with aromatic alkenes, affording a wide variety of structurally fused heterocyclic molecules in high yields with excellent stereoselectivities. Moreover, mechanistic investigations revealed that the bifunctional phosphonium salt controlled the regio- and stereoselectivities of this cascade reaction, particularly proceeding through the initial ketone α-addition followed by O-participated substitution; and the multiple hydrogen-bonding interactions between Brønsted acid moieties of catalyst and nitro group of aromatic alkene were crucial in asymmetric induction. Given the generality, versatility, and high efficiency of this method, we anticipate that it will have broad synthetic utilities.
Collapse
Affiliation(s)
- Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yayun Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China.,School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Cheng Zhuang
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610064, P. R. China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
8
|
Zhang J, Liu M, Huang M, Li W, Zhang X. Enantioselective Dearomative [3+2] Annulation of 3‐Hydroxymaleimides with Azonaphthalenes. ChemistrySelect 2021. [DOI: 10.1002/slct.202100722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jiayan Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Min Liu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Min Huang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Wenzhe Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Xiaomei Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
| |
Collapse
|
9
|
Lin Z, Xue Y, Liang XW, Wang J, Lin S, Tao J, You SL, Liu W. Oxidative Indole Dearomatization for Asymmetric Furoindoline Synthesis by a Flavin-Dependent Monooxygenase Involved in the Biosynthesis of Bicyclic Thiopeptide Thiostrepton. Angew Chem Int Ed Engl 2021; 60:8401-8405. [PMID: 33496012 DOI: 10.1002/anie.202013174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/02/2021] [Indexed: 01/20/2023]
Abstract
The interest in indole dearomatization, which serves as a useful tool in the total synthesis of related alkaloid natural products, has recently been renewed with the intention of developing new methods efficient in both yield and stereoselective control. Here, we report an enzymatic approach for the oxidative dearomatization of indoles in the asymmetric synthesis of a variety of furoindolines with a vicinal quaternary carbon stereogenic center. This approach depends on the activity of a flavin-dependent monooxygenase, TsrE, which is involved in the biosynthesis of bicyclic thiopeptide antibiotic thiostrepton. TsrE catalyzes 2,3-epoxidation and subsequent epoxide opening in a highly enantioselective manner during the conversion of 2-methyl-indole-3-acetic acid or 2-methyl-tryptophol to furoindoline, with up to >99 % conversion and >99 % ee under mild reaction conditions. Complementing current chemical methods for oxidative indole dearomatization, the TsrE activity-based approach enriches the toolbox in the asymmetric synthesis of products possessing a furoindoline skeleton.
Collapse
Affiliation(s)
- Zhi Lin
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yufeng Xue
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiao-Wei Liang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jian Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,Department of General Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiang Tao
- Department of General Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou, 313000, China
| |
Collapse
|
10
|
Oxidative Indole Dearomatization for Asymmetric Furoindoline Synthesis by a Flavin‐Dependent Monooxygenase Involved in the Biosynthesis of Bicyclic Thiopeptide Thiostrepton. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Photoinduced Dearomatizing Three‐Component Coupling of Arylphosphines, Alkenes, and Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Masuda Y, Tsuda H, Murakami M. Photoinduced Dearomatizing Three-Component Coupling of Arylphosphines, Alkenes, and Water. Angew Chem Int Ed Engl 2021; 60:3551-3555. [PMID: 33085144 DOI: 10.1002/anie.202013215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Indexed: 12/18/2022]
Abstract
A unique photoinduced reaction that couples a triarylphosphine, an alkene, and water to produce 2-(cyclohexa-2,5-dienyl)ethylphosphine oxide is reported herein. The alkene inserts into a C(aryl)-P bond of the arylphosphine, the aryl ring is dearomatized into the cyclohexadienyl ring, and the phosphorus is oxidized. The three components are all readily available, and their intermolecular coupling significantly increases molecular complexity. The products formed are applicable to the Wittig olefination.
Collapse
Affiliation(s)
- Yusuke Masuda
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| | - Hiromu Tsuda
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| |
Collapse
|
13
|
Zhou L, Yan W, Sun X, Wang L, Tang Y. A Versatile Enantioselective Catalytic Cyclopropanation‐Rearrangement Approach to the Divergent Construction of Chiral Spiroaminals and Fused Bicyclic Acetals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Li Zhou
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wen‐Guang Yan
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Li Sun
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Lijia Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Department of Chemistry East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Yong Tang
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
14
|
Zhou L, Yan W, Sun X, Wang L, Tang Y. A Versatile Enantioselective Catalytic Cyclopropanation‐Rearrangement Approach to the Divergent Construction of Chiral Spiroaminals and Fused Bicyclic Acetals. Angew Chem Int Ed Engl 2020; 59:18964-18969. [DOI: 10.1002/anie.202007068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/20/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Li Zhou
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wen‐Guang Yan
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Li Sun
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Lijia Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Department of Chemistry East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Yong Tang
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, CAS University of Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
15
|
Lombardi L, Bellini D, Bottoni A, Calvaresi M, Monari M, Kovtun A, Palermo V, Melucci M, Bandini M. Allylic and Allenylic Dearomatization of Indoles Promoted by Graphene Oxide by Covalent Grafting Activation Mode. Chemistry 2020; 26:10427-10432. [PMID: 32346922 DOI: 10.1002/chem.202001373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Indexed: 12/14/2022]
Abstract
The site-selective allylative and allenylative dearomatization of indoles with alcohols was performed under carbocatalytic regime in the presence of graphene oxide (GO, 10 wt % loading) as the promoter. Metal-free conditions, absence of stoichiometric additive, environmentally friendly conditions (H2 O/CH3 CN, 55 °C, 6 h), broad substrate scope (33 examples, yield up to 92 %) and excellent site- and stereoselectivity characterize the present methodology. Moreover, a covalent activation model exerted by GO functionalities was corroborated by spectroscopic, experimental and computational evidences. Recovering and regeneration of the GO catalyst through simple acidic treatment was also documented.
Collapse
Affiliation(s)
- Lorenzo Lombardi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Daniele Bellini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Andrea Bottoni
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Magda Monari
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Alessandro Kovtun
- Istituto per la Sintesi Organica e Fotoreattività (ISOF)-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Vincenzo Palermo
- Istituto per la Sintesi Organica e Fotoreattività (ISOF)-CNR, via Gobetti 101, 40129, Bologna, Italy
- Chalmers University of Technology, Industrial and Materials Science, Hörsalsvägen 7A, 412 96, Goteborg, Sweden
| | - Manuela Melucci
- Istituto per la Sintesi Organica e Fotoreattività (ISOF)-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Marco Bandini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy
- Consorzio C.I.N.M.P.I.S., via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
16
|
Shao W, Xu‐Xu Q, You S. Highly Diastereoselective Synthesis of Polycyclic Indolines through Formal [4+2] Propargylic Cycloaddition of Indoles with Ethynyl Benzoxazinanones. Chem Asian J 2020; 15:2462-2466. [DOI: 10.1002/asia.202000640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Wen Shao
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qing‐Feng Xu‐Xu
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
17
|
Ma J, Schäfers F, Daniliuc C, Bergander K, Strassert CA, Glorius F. Gadolinium Photocatalysis: Dearomative [2+2] Cycloaddition/Ring‐Expansion Sequence with Indoles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jiajia Ma
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Felix Schäfers
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Constantin Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Klaus Bergander
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Cristian A. Strassert
- CeNTech, CiMIC, SoN, Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Münster Germany
| | - Frank Glorius
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
18
|
Ma J, Schäfers F, Daniliuc C, Bergander K, Strassert CA, Glorius F. Gadolinium Photocatalysis: Dearomative [2+2] Cycloaddition/Ring‐Expansion Sequence with Indoles. Angew Chem Int Ed Engl 2020; 59:9639-9645. [DOI: 10.1002/anie.202001200] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Jiajia Ma
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Felix Schäfers
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Constantin Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Klaus Bergander
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Cristian A. Strassert
- CeNTech, CiMIC, SoN, Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Münster Germany
| | - Frank Glorius
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
19
|
Song C, Liu K, Jiang X, Dong X, Weng Y, Chiang C, Lei A. Electrooxidation Enables Selective Dehydrogenative [4+2] Annulation between Indole Derivatives. Angew Chem Int Ed Engl 2020; 59:7193-7197. [DOI: 10.1002/anie.202000226] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Chunlan Song
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Kun Liu
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xu Jiang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xin Dong
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Yue Weng
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Chien‐Wei Chiang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
20
|
Song C, Liu K, Jiang X, Dong X, Weng Y, Chiang C, Lei A. Electrooxidation Enables Selective Dehydrogenative [4+2] Annulation between Indole Derivatives. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chunlan Song
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Kun Liu
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xu Jiang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xin Dong
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Yue Weng
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Chien‐Wei Chiang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|