1
|
Xie X, Wang Y, Siu SY, Chan CW, Zhu Y, Zhang X, Ge J, Ren K. Microfluidic synthesis as a new route to produce novel functional materials. BIOMICROFLUIDICS 2022; 16:041301. [PMID: 36035887 PMCID: PMC9410731 DOI: 10.1063/5.0100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
By geometrically constraining fluids into the sub-millimeter scale, microfluidics offers a physical environment largely different from the macroscopic world, as a result of the significantly enhanced surface effects. This environment is characterized by laminar flow and inertial particle behavior, short diffusion distance, and largely enhanced heat exchange. The recent two decades have witnessed the rapid advances of microfluidic technologies in various fields such as biotechnology; analytical science; and diagnostics; as well as physical, chemical, and biological research. On the other hand, one additional field is still emerging. With the advances in nanomaterial and soft matter research, there have been some reports of the advantages discovered during attempts to synthesize these materials on microfluidic chips. As the formation of nanomaterials and soft matters is sensitive to the environment where the building blocks are fed, the unique physical environment of microfluidics and the effectiveness in coupling with other force fields open up a lot of possibilities to form new products as compared to conventional bulk synthesis. This Perspective summarizes the recent progress in producing novel functional materials using microfluidics, such as generating particles with narrow and controlled size distribution, structured hybrid materials, and particles with new structures, completing reactions with a quicker rate and new reaction routes and enabling more effective and efficient control on reactions. Finally, the trend of future development in this field is also discussed.
Collapse
Affiliation(s)
- Xinying Xie
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yisu Wang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Sin-Yung Siu
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chiu-Wing Chan
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | | | - Xuming Zhang
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong 999077, China
| | | | - Kangning Ren
- Author to whom correspondence should be addressed: and
| |
Collapse
|
2
|
Zhou W, Dou M, Timilsina SS, Xu F, Li X. Recent innovations in cost-effective polymer and paper hybrid microfluidic devices. LAB ON A CHIP 2021; 21:2658-2683. [PMID: 34180494 PMCID: PMC8360634 DOI: 10.1039/d1lc00414j] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Hybrid microfluidic systems that are composed of multiple different types of substrates have been recognized as a versatile and superior platform, which can draw benefits from different substrates while avoiding their limitations. This review article introduces the recent innovations of different types of low-cost hybrid microfluidic devices, particularly focusing on cost-effective polymer- and paper-based hybrid microfluidic devices. In this article, the fabrication of these hybrid microfluidic devices is briefly described and summarized. We then highlight various hybrid microfluidic systems, including polydimethylsiloxane (PDMS)-based, thermoplastic-based, paper/polymer hybrid systems, as well as other emerging hybrid systems (such as thread-based). The special benefits of using these hybrid systems have been summarized accordingly. A broad range of biological and biomedical applications using these hybrid microfluidic devices are discussed in detail, including nucleic acid analysis, protein analysis, cellular analysis, 3D cell culture, organ-on-a-chip, and tissue engineering. The perspective trends of hybrid microfluidic systems involving the improvement of fabrication techniques and broader applications are also discussed at the end of the review.
Collapse
Affiliation(s)
- Wan Zhou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA.
| | - Maowei Dou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA.
| | - Sanjay S Timilsina
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA.
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA. and Border Biomedical Research Center, Biomedical Engineering, University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA and Environmental Science and Engineering, University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
| |
Collapse
|
3
|
Khalesi Moghaddam R, Bhalla N, Q Shen A, Natale G. Deterministic particle assembly on nanophotonic chips. J Colloid Interface Sci 2021; 603:259-269. [PMID: 34214719 DOI: 10.1016/j.jcis.2021.06.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/14/2021] [Accepted: 06/20/2021] [Indexed: 10/21/2022]
Abstract
HYPOTHESIS Controlled particle assembly from a dilute suspension droplet is challenging yet important for many lab-on-a-chip and biosensing applications. The formation of hot spots on the localized surface plasmonic resonance (LSPR) substrates induced by laser excitation can generate microbubbles. These microbubbles, upon the laser removal, shrink and collapse due to electron energy dissipation, leading to guided particle assembly on the LSPR substrate. EXPERIMENTS After depositing dilute silica particles dispersions on both nanoisland (AuNI) and planar gold (Au) plasmonic substrates (referred to as LSPR and SPR substrates respectively), microbubbles were formed when a laser beam was applied. Particle dispersion concentration, laser power, and the radius of circular laser sequence were varied to produce different sizes of particle clusters on the LSPR substrate after bubble shrinkage upon the laser removal. To stabilize the assembled structures over time, sodium chloride (NaCl) was ad ded to the dispersions. FINDINGS Even though thermo-plasmonic flow and microbubbles can be produced with SPR substrates, particle assembly is only possible on LSPR substrates because of electron energy dissipation via nanoscale air gaps trapped in the LSPR substrate. By tuning the laser power, the radius of the circular laser sequence, and the particle dispersion concentration, the number of particles in the assembled structure can be controlled. The addition of NaCl to the dispersion can screen the electrostatic charges among the particles and between the particles and substrate, favoring hydrogen bonding and stabilizing the assembled structures for hours. These findings establish a new framework for utilizing nanophotonic chips where particle assembly can be achieved by a single source of light.
Collapse
Affiliation(s)
- Razie Khalesi Moghaddam
- Department of Chemical & Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Alberta, Canada
| | - Nikhil Bhalla
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, BT37 0QB Jordanstown, Northern Ireland, United Kingdom; Heathcare Technology Hub, Ulster University, BT37 0QB Jordanstown, Northern Ireland, United Kingdom
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Giovanniantonio Natale
- Department of Chemical & Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Alberta, Canada.
| |
Collapse
|
4
|
Zhang Q, Feng S, Li W, Xie T, Zhang W, Lin J. In Situ Stable Generation of Reactive Intermediates by Open Microfluidic Probe for Subcellular Free Radical Attack and Membrane Labeling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qiang Zhang
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Shuo Feng
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Weiwei Li
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Tianze Xie
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Wanling Zhang
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Jin‐Ming Lin
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
5
|
Zhang Q, Feng S, Li W, Xie T, Zhang W, Lin J. In Situ Stable Generation of Reactive Intermediates by Open Microfluidic Probe for Subcellular Free Radical Attack and Membrane Labeling. Angew Chem Int Ed Engl 2021; 60:8483-8487. [DOI: 10.1002/anie.202016171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/07/2021] [Indexed: 01/19/2023]
Affiliation(s)
- Qiang Zhang
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Shuo Feng
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Weiwei Li
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Tianze Xie
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Wanling Zhang
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Jin‐Ming Lin
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
6
|
Destgeer G, Ouyang M, Di Carlo D. Engineering Design of Concentric Amphiphilic Microparticles for Spontaneous Formation of Picoliter to Nanoliter Droplet Volumes. Anal Chem 2021; 93:2317-2326. [DOI: 10.1021/acs.analchem.0c04184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ghulam Destgeer
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Mengxing Ouyang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Han Z, Porter AE. In situ Electron Microscopy of Complex Biological and Nanoscale Systems: Challenges and Opportunities. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.606253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In situ imaging for direct visualization is important for physical and biological sciences. Research endeavors into elucidating dynamic biological and nanoscale phenomena frequently necessitate in situ and time-resolved imaging. In situ liquid cell electron microscopy (LC-EM) can overcome certain limitations of conventional electron microscopies and offer great promise. This review aims to examine the status-quo and practical challenges of in situ LC-EM and its applications, and to offer insights into a novel correlative technique termed microfluidic liquid cell electron microscopy. We conclude by suggesting a few research ideas adopting microfluidic LC-EM for in situ imaging of biological and nanoscale systems.
Collapse
|
8
|
Destgeer G, Ouyang M, Wu CY, Di Carlo D. Fabrication of 3D concentric amphiphilic microparticles to form uniform nanoliter reaction volumes for amplified affinity assays. LAB ON A CHIP 2020; 20:3503-3514. [PMID: 32895694 DOI: 10.1039/d0lc00698j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Reactions performed in uniform microscale volumes have enabled numerous applications in the analysis of rare entities (e.g. cells and molecules). Here, highly monodisperse aqueous droplets are formed by simply mixing microscale multi-material particles, consisting of concentric hydrophobic outer and hydrophilic inner layers, with oil and water. The particles are manufactured in batch using a 3D printed device to co-flow four concentric streams of polymer precursors which are polymerized with UV light. The cross-sectional shapes of the particles are altered by microfluidic nozzle design in the 3D printed device. Once a particle encapsulates an aqueous volume, each "dropicle" provides uniform compartmentalization and customizable shape-coding for each sample volume to enable multiplexing of uniform reactions in a scalable manner. We implement an enzymatically-amplified immunoassay using the dropicle system, yielding a detection limit of <1 pM with a dynamic range of at least 3 orders of magnitude. Multiplexing using two types of shape-coded particles was demonstrated without cross talk, laying a foundation for democratized single-entity assays.
Collapse
Affiliation(s)
- Ghulam Destgeer
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
9
|
Aprahamian I. The Future of Molecular Machines. ACS CENTRAL SCIENCE 2020; 6:347-358. [PMID: 32232135 PMCID: PMC7099591 DOI: 10.1021/acscentsci.0c00064] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Indexed: 05/23/2023]
Abstract
Artificial molecular machines have captured the imagination of scientists and nonscientists alike for decades now, given their clear potential to transform and enhance all aspects of human life. In this Outlook, I use a bicycle as an analogy to explain what a molecular machine is, in my opinion, and work through a representative selection of case studies to specify the significant accomplishments made to date, and the obstacles that currently stand between these and the field's fulfillment of its great potential. The hope of this intentionally sober account is to sketch a path toward a rich and exciting research trajectory that might challenge current practitioners and attract junior scientists into its fold. Considering the progress we have witnessed in the past decade, I am positive that the future of the field is a rosy one.
Collapse
Affiliation(s)
- Ivan Aprahamian
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|