1
|
Mandal D, Demirer TI, Sergeieva T, Morgenstern B, Wiedemann HTA, Kay CWM, Andrada DM. Evidence of Al II Radical Addition to Benzene. Angew Chem Int Ed Engl 2023; 62:e202217184. [PMID: 36594569 DOI: 10.1002/anie.202217184] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Electrophilic AlIII species have long dominated the aluminum reactivity towards arenes. Recently, nucleophilic low-valent AlI aluminyl anions have showcased oxidative additions towards arenes C-C and/or C-H bonds. Herein, we communicate compelling evidence of an AlII radical addition reaction to the benzene ring. The electron reduction of a ligand stabilized precursor with KC8 in benzene furnishes a double addition to the benzene ring instead of a C-H bond activation, producing the corresponding cyclohexa-1,3(orl,4)-dienes as Birch-type reduction product. X-ray crystallographic analysis, EPR spectroscopy, and DFT results suggest this reactivity proceeds through a stable AlII radical intermediate, whose stability is a consequence of a rigid scaffold in combination with strong steric protection.
Collapse
Affiliation(s)
- Debdeep Mandal
- General and Inorganic Chemistry Department, University of Saarland, Campus C4.1, 66123, Saarbrücken, Germany
| | - T Ilgin Demirer
- General and Inorganic Chemistry Department, University of Saarland, Campus C4.1, 66123, Saarbrücken, Germany
| | - Tetiana Sergeieva
- General and Inorganic Chemistry Department, University of Saarland, Campus C4.1, 66123, Saarbrücken, Germany
| | - Bernd Morgenstern
- General and Inorganic Chemistry Department, University of Saarland, Campus C4.1, 66123, Saarbrücken, Germany
| | - Haakon T A Wiedemann
- Physical Chemistry Department, University of Saarland, Campus B2.2, 66123, Saarbrücken, Germany
| | - Christopher W M Kay
- Physical Chemistry Department, University of Saarland, Campus B2.2, 66123, Saarbrücken, Germany.,London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK
| | - Diego M Andrada
- General and Inorganic Chemistry Department, University of Saarland, Campus C4.1, 66123, Saarbrücken, Germany
| |
Collapse
|
2
|
Bedard J, Roberts NJ, Shayan M, Bamford KL, Werner-Zwanziger U, Marczenko KM, Chitnis SS. (PNSiMe 3 ) 4 (NMe) 6 : A Robust Tetravalent Phosphaza-adamantane Scaffold for Molecular and Macromolecular Construction. Angew Chem Int Ed Engl 2022; 61:e202204851. [PMID: 35384216 DOI: 10.1002/anie.202204851] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 01/03/2023]
Abstract
Tetraarylmethanes and adamantanes are important rigid covalent connectors that play a four-way scaffolding role in molecular and materials chemistry. We report the synthesis of a new tetravalent phosphaza-adamantane cage, (PNSiMe3 )4 (NMe)6 (2), that shows high thermal, air, and redox stability due to its geometry. It nevertheless participates in covalent four-fold functionalization reactions along its periphery. The combination of a robust core and reactive corona makes 2 a convenient inorganic scaffold upon which tetrahedral molecular and macromolecular chemistry can be constructed. This potential is demonstrated by the synthesis of a tetrakis(bis(phosphine)iminium) ion (in compound 3) and the first all P/N poly(phosphazene) network (5).
Collapse
Affiliation(s)
- Joseph Bedard
- Chemistry Department, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Nicholas J Roberts
- Chemistry Department, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Mohsen Shayan
- Chemistry Department, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Karlee L Bamford
- Chemistry Department, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Ulrike Werner-Zwanziger
- Chemistry Department, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia, B3H 4R2, Canada
| | | | - Saurabh S Chitnis
- Chemistry Department, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
3
|
Bedard J, Roberts N, Shayan M, Bamford KL, Werner-Zwanziger U, Marczenko KM, Chitnis SS. (PNSiMe3)4(NMe)6: A Robust Tetravalent Phosphaza‐adamantane Scaffold for Molecular and Macromolecular Construction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | | | | | | | - Saurabh S. Chitnis
- Dalhousie University Department of Chemistry Chemistry Building, 6274 Coburg Road B3H 4R2 Halifax CANADA
| |
Collapse
|
4
|
Omaña AA, Green RK, Kobayashi R, He Y, Antoniuk ER, Ferguson MJ, Zhou Y, Veinot JGC, Iwamoto T, Brown A, Rivard E. Frustrated Lewis Pair Chelation as a Vehicle for Low-Temperature Semiconductor Element and Polymer Deposition. Angew Chem Int Ed Engl 2021; 60:228-231. [PMID: 32960472 DOI: 10.1002/anie.202012218] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 01/03/2023]
Abstract
The stabilization of silicon(II) and germanium(II) dihydrides by an intramolecular Frustrated Lewis Pair (FLP) ligand, PB, i Pr2 P(C6 H4 )BCy2 (Cy=cyclohexyl) is reported. The resulting hydride complexes [PB{SiH2 }] and [PB{GeH2 }] are indefinitely stable at room temperature, yet can deposit films of silicon and germanium, respectively, upon mild thermolysis in solution. Hallmarks of this work include: 1) the ability to recycle the FLP phosphine-borane ligand (PB) after element deposition, and 2) the single-source precursor [PB{SiH2 }] deposits Si films at a record low temperature from solution (110 °C). The dialkylsilicon(II) adduct [PB{SiMe2 }] was also prepared, and shown to release poly(dimethylsilane) [SiMe2 ]n upon heating. Overall, this study introduces a "closed loop" deposition strategy for semiconductors that steers materials science away from the use of harsh reagents or high temperatures.
Collapse
Affiliation(s)
- Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Rachel K Green
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Ryo Kobayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Yingjie He
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Evan R Antoniuk
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Yuqiao Zhou
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Jonathan G C Veinot
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Alex Brown
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
5
|
Omaña AA, Green RK, Kobayashi R, He Y, Antoniuk ER, Ferguson MJ, Zhou Y, Veinot JGC, Iwamoto T, Brown A, Rivard E. Frustrated Lewis Pair Chelation as a Vehicle for Low‐Temperature Semiconductor Element and Polymer Deposition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Alvaro A. Omaña
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Rachel K. Green
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Ryo Kobayashi
- Department of Chemistry Graduate School of Science Tohoku University, Aoba-ku Sendai 980-8578 Japan
| | - Yingjie He
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Evan R. Antoniuk
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Michael J. Ferguson
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Yuqiao Zhou
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Jonathan G. C. Veinot
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Takeaki Iwamoto
- Department of Chemistry Graduate School of Science Tohoku University, Aoba-ku Sendai 980-8578 Japan
| | - Alex Brown
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Eric Rivard
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
6
|
MacMillan JWM, Marczenko KM, Johnson ER, Chitnis SS. Hydrostibination of Alkynes: A Radical Mechanism*. Chemistry 2020; 26:17134-17142. [PMID: 32706129 DOI: 10.1002/chem.202003153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 11/09/2022]
Abstract
The addition of Sb-H bonds to alkynes was reported recently as a new hydroelementation reaction that exclusively yields anti-Markovnikov Z-olefins from terminal acetylenes. We examine four possible mechanisms that are consistent with the observed stereochemical and regiochemical outcomes. A comprehensive analysis of solvent, substituent, isotope, additive, and temperature effects on hydrostibination reaction rates definitively refutes three ionic mechanisms involving closed-shell charged intermediates. Instead the data support a fourth pathway featuring open-shell neutral intermediates. Density-functional theory (DFT) calculations are consistent with this model, predicting an activation barrier that is in agreement with the experimental value (Eyring analysis) and a rate limiting step that is congruent with the experimental kinetic isotope effect. We therefore conclude that hydrostibination of arylacetylenes is initiated by the generation of stibinyl radicals, which then participate in a cycle featuring SbII and SbIII intermediates to yield the observed Z-olefins as products. This mechanistic understanding will enable rational evolution of hydrostibination as a synthetic methodology.
Collapse
Affiliation(s)
- Joshua W M MacMillan
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, B3H 4R2, Halifax, Canada
| | - Katherine M Marczenko
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, B3H 4R2, Halifax, Canada
| | - Erin R Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, B3H 4R2, Halifax, Canada
| | - Saurabh S Chitnis
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, B3H 4R2, Halifax, Canada
| |
Collapse
|
7
|
Béland VA, Ragogna PJ. Orthogonally Bimetallized Phosphane-ene Photopolymer Networks. Chemistry 2020; 26:12751-12757. [PMID: 32293766 DOI: 10.1002/chem.202001179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/12/2020] [Indexed: 11/09/2022]
Abstract
The development of batteries and fuel cells has brought to light a need for carbon anode materials doped homogeneously with electrocatalytic metals. In particular, combinations of electrocatalysts in carbon have shown promising activity. A method to derive functional carbon materials is the pyrolysis of metallopolymers. This work describes the synthesis of a bifunctional phosphonium-based system derived from a phosphane-ene network. The olefin functionality can be leveraged in a hydrogermylation reaction to functionalize the material with Ge. Unaffected by this radical addition, the bromide counterion of the phosphonium cation can be used to subsequently incorporate a second metal in an ion-complexation reaction with CuBr2 . The characterization of the polymers and the derived ceramics are discussed.
Collapse
Affiliation(s)
- Vanessa A Béland
- Department of Chemistry and the Center for, Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Paul J Ragogna
- Department of Chemistry and the Center for, Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|