1
|
Cui J, Ali SH, Shen Z, Xu W, Liu J, Li P, Li Y, Chen L, Wang B. ε-Polylysine organic ultra-long room-temperature phosphorescent materials based on phosphorescent molecule doping. Chem Sci 2024; 15:4171-4178. [PMID: 38487222 PMCID: PMC10935660 DOI: 10.1039/d3sc06271f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/02/2024] [Indexed: 03/17/2024] Open
Abstract
Achieving long-lived room-temperature phosphorescence from pure organic amorphous polymers is attractive, and afterglow materials with colour-tunable and multiple-stimuli-responsive afterglow are particularly important, but only few materials with these characteristics have been reported so far. Herein, a facile and general method is reported to construct a series of ε-polylysine (ε-PL)-based afterglow materials with tunable colour (from blue to red) and long life. By doping guest molecules into ε-PL to obtain composite materials, the polymer matrix provides a rigid environment for luminescent groups, resulting in amorphous polymers with different RTPs. In this system, the materials even have impressive humidity-stimulated responses, and the phosphorescence emission exhibits excitation-dependent and time-dependent properties. The humidity-responsive afterglow is caused by the destruction of hydrogen bonds and quenching of triplet excitons. The time-dependent afterglow should stem from the formation of diversified RTP emissive species with comparable but different lifetimes. 9,10-diaminophene has Ex-De properties in the film doping state. With the change of excitation wavelength (254 nm to 365 nm), the emission wavelength shifts from 461 nm to 530 nm, accompanied by the change of emission colour from blue to green. In addition, the phosphorescence life of the film is the longest, up to 2504.7 ms, and the afterglow lasts up to 15 s, which is conducive to its applications in anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Jiaying Cui
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
| | - Syed Husnain Ali
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
| | - Zhuoyao Shen
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
| | - Wensheng Xu
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
| | - Jiayi Liu
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
| | - Pengxiang Li
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals Tianjin 300350 P.R. China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
- Zhejiang Institute of Tianjin University Shaoxing 312300 P.R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals Tianjin 300350 P.R. China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
- Zhejiang Institute of Tianjin University Shaoxing 312300 P.R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals Tianjin 300350 P.R. China
| |
Collapse
|
2
|
Su H, Hu K, Huang W, Wang T, Zhang X, Chen B, Miao H, Zhang X, Zhang G. Functional Roles of Polymers in Room-Temperature Phosphorescent Materials: Modulation of Intersystem Crossing, Air Sensitivity and Biological Activity. Angew Chem Int Ed Engl 2023; 62:e202218712. [PMID: 36718871 DOI: 10.1002/anie.202218712] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Organic room-temperature phosphorescent (RTP) materials routinely incorporate polymeric components, which usually act as non-functional or "inert" media to protect excited-state phosphors from thermal and collisional quenching, but are lesser explored for other influences. Here, we report some exemplary "active roles" of polymer matrices played in organic RTP materials, including: 1) color modulation of total delayed emissions via balancing the population ratio between thermally-activated delayed fluorescence (TADF) and RTP due to dielectric-dependent intersystem crossing; 2) altered air sensitivity of RTP materials by generating various surface morphologies such as nano-sized granules; 3) enhanced bacterial elimination for enhanced electrostatic interactions with negatively charged bio-membranes. These active roles demonstrated that the vast library of polymeric structures and functionalities can be married to organic phosphors to broaden new application horizons for RTP materials.
Collapse
Affiliation(s)
- Hao Su
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Kan Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Wenhuan Huang
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Tao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaolong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Biao Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Hui Miao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xuepeng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Guoqing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.,Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| |
Collapse
|
3
|
Li JA, Zhang L, Wu C, Huang Z, Li S, Zhang H, Yang Q, Mao Z, Luo S, Liu C, Shi G, Xu B. Switchable and Highly Robust Ultralong Room-Temperature Phosphorescence from Polymer-Based Transparent Films with Three-Dimensional Covalent Networks for Erasable Light Printing. Angew Chem Int Ed Engl 2023; 62:e202217284. [PMID: 36512442 DOI: 10.1002/anie.202217284] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
In this work, an efficient polymer-based organic afterglow system, which shows reversible photochromism, switchable ultralong organic phosphorescence (UOP), and prominent water and chemical resistance simultaneously, has been developed for the first time. By doping phenoxazine (PXZ) and 10-ethyl-10H-phenoxazine (PXZEt) into epoxy polymers, the resulting PXZ@EP-0.25 % and PXZEt@EP-0.25 % films show unique photoactivated UOP properties, with phosphorescence quantum yields and lifetimes up to 10.8 % and 845 ms, respectively. It is found that the steady-state luminescence and UOP of PXZ@EP-0.25 % are switchable by light irradiation and thermal annealing. Moreover, the doped films can still produce conspicuous UOP after soaking in water, strong acid and base, and organic solvents for more than two weeks, exhibiting outstanding water and chemical resistance. Inspired by these exciting results, the PXZ@EP-0.25 % has been successfully exploited as an erasable transparent film for light printing.
Collapse
Affiliation(s)
- Jian-An Li
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Letian Zhang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Chunlei Wu
- Guangzhou Huifu Research Institute Co., Ltd., Guangzhou, 510663, China
| | - Zihao Huang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Shufeng Li
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Huaqing Zhang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Qingchen Yang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Zhu Mao
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Suilian Luo
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Cong Liu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Guang Shi
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Bingjia Xu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Shen Y, An Z, Liu H, Yang B, Zhang Y. Excitation-Dependent Multicolour Luminescence of Organic Materials: Internal Mechanism and Potential Applications. Angew Chem Int Ed Engl 2023; 62:e202214483. [PMID: 36346193 DOI: 10.1002/anie.202214483] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
Excitation-dependent emission (Ex-de) materials have been of considerable academic interest and have potential applications in real life. Such multicolour luminescence is a characteristic exception to the ubiquitously accepted Kasha's rule. This phenomenon has been increasingly presented in some studies on different luminescence systems; however, a systematic overview of the mechanisms underlying this phenomenon is currently absent. Herein, we resolve this issue by classifying multicolour luminescence from single chromophores and dual/ternary chromophores, as well as multiple emitting species. The underlying processes are described based on electronic and/or geometrical conditions under which the phenomenon occurs. Before we present it in categories, related photophysical and photochemical foundations are introduced. This systematic overview will provide a clear approach to designing multicolour luminescence materials for special applications.
Collapse
Affiliation(s)
- Yunxia Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road No. 688, Jinhua, 321004, P. R. China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yujian Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road No. 688, Jinhua, 321004, P. R. China
| |
Collapse
|
5
|
Wang J. High efficient room temperature phosphorescent materials constructed with methylene molecular configuration. Front Chem 2022; 10:1010676. [PMID: 36247674 PMCID: PMC9558821 DOI: 10.3389/fchem.2022.1010676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
In this work, we have investigated several pure organic room temperature phosphorescent materials with donor-methylene acceptor configurations with relatively different quantum efficiency. The results show that the introduction of methylene functional group in room temperature phosphorescent materials based on donor-acceptor configuration is more favorable for obtaining higher phosphorescent quantum efficiency in crystal phase environment. More importantly, our calculations reveal the root cause of the excellent quantum efficiency performance after the introduction of methylene groups. The results show that the introduction of methylene can inhibit the structural deformation of molecules during the excited state transition process and give them higher interaction. Moreover, in the donor-acceptor configuration, the heavy atom effect is more favorable to the formation of π-x (X = Br) interaction to accelerate the occurrence of intersystem crossing and achieve a higher intersystem crossing rate. Therefore, the donor-methylene-acceptor molecule is expected to improve the quantum efficiency of room temperature phosphorescence, and the addition of heavy atoms is more conducive to prolong the life of room temperature phosphorescence. This work provides a useful reference for rational design of room temperature phosphorescent materials with high efficiency and long life.
Collapse
|
6
|
Wang Z, Gao L, Zheng Y, Zhu Y, Zhang Y, Zheng X, Wang C, Li Y, Zhao Y, Yang C. Four‐in‐One Stimulus‐Responsive Long‐Lived Luminescent Systems Based on Pyrene‐Doped Amorphous Polymers. Angew Chem Int Ed Engl 2022; 61:e202203254. [DOI: 10.1002/anie.202203254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zhonghao Wang
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Liang Gao
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Yan Zheng
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Yinyin Zhu
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Yongfeng Zhang
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Xian Zheng
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Chang Wang
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Youbing Li
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Chaolong Yang
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| |
Collapse
|
7
|
Lv H, Tang H, Cai Y, Wu T, Peng D, Yao Y, Xu X. Highly Stable Metal‐Free Long‐Persistent Luminescent Copolymer for Low Flicker AC‐LEDs. Angew Chem Int Ed Engl 2022; 61:e202204209. [DOI: 10.1002/anie.202204209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Hongyu Lv
- College of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Haitao Tang
- College of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Yiyu Cai
- College of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Tao Wu
- Ningbo Cuiying Chemical Technology Co., Ltd Ningbo 315000 P. R. China
| | - Dongliang Peng
- College of Materials Science and Engineering Xiamen University Xiamen 361005 P. R. China
| | - Yuan Yao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province Westlake University Hangzhou 310024 P. R. China
| | - Xuhui Xu
- College of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| |
Collapse
|
8
|
Xue C, Jiang Y, Wang H, Du C, Xu L, Li T, Liu M. Excitation‐Dependent Circularly Polarized Luminescence from Helical Assemblies Based on Tartaric Acid‐Derived Acylhydrazones. Angew Chem Int Ed Engl 2022; 61:e202205633. [DOI: 10.1002/anie.202205633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Chenlu Xue
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Yuqian Jiang
- Key laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nano-science and Technology No.11 ZhongGuanCun BeiYiTiao Beijing 100190 China
| | - Han‐Xiao Wang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Cong Du
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Lifei Xu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
9
|
Li J, Wang G, Chen X, Li X, Wu M, Yuan S, Zou Y, Wang X, Zhang K. Manipulation of Triplet Excited States in Two‐Component Systems for High‐Performance Organic Afterglow Materials. Chemistry 2022; 28:e202200852. [DOI: 10.1002/chem.202200852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jiuyang Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Guangming Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xuefeng Chen
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Minjian Wu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Shou Yuan
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Yunlong Zou
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xuepu Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Kaka Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
10
|
Lv H, Tang H, Cai Y, Wu T, Peng D, Yao Y, Xu X. Highly Stable Metal‐Free Long‐Persistent Luminescent Copolymer for Low Flicker AC‐LEDs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hongyu Lv
- College of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Haitao Tang
- College of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Yiyu Cai
- College of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| | - Tao Wu
- Ningbo Cuiying Chemical Technology Co., Ltd Ningbo 315000 P. R. China
| | - Dongliang Peng
- College of Materials Science and Engineering Xiamen University Xiamen 361005 P. R. China
| | - Yuan Yao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province Westlake University Hangzhou 310024 P. R. China
| | - Xuhui Xu
- College of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 P. R. China
| |
Collapse
|
11
|
Yang Y, Liang Y, Zheng Y, Li JA, Wu S, Zhang H, Huang T, Luo S, Liu C, Shi G, Sun F, Chi Z, Xu B. Efficient and Color-Tunable Dual-Mode Afterglow from Large-Area and Flexible Polymer-Based Transparent Films for Anti-Counterfeiting and Information Encryption. Angew Chem Int Ed Engl 2022; 61:e202201820. [PMID: 35315193 DOI: 10.1002/anie.202201820] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 12/13/2022]
Abstract
It remains a great challenge to develop polymer-based materials with efficient and color-tunable organic afterglow. Two indolocarbazole derivatives IaCzA and IbCzA have been synthesized and doped into poly(vinyl alcohol) (PVA) matrices. It is found that the resulting films can produce unique dual-mode afterglow, which is composed of persistent thermally activated delayed fluorescence and ultralong organic phosphorescence. Besides, the IbCzA-doped PVA film exhibits intense blue afterglow with Φafterglow and τafterglow up to 19.8 % and 1.81 s, respectively, representing state-of-the-art dual-mode organic afterglow performance. Moreover, our reported film has high flexibility, excellent transparency, and large-area producibility; and the afterglow color of the film can be linearly tuned by temperature. Inspired by these distinctive properties, the PVA doped with IbCzA was employed as temperature-sensitive security ink for anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Yifan Yang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Yaohui Liang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Yitao Zheng
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Jian-An Li
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Shiying Wu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Huaqing Zhang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Tepeng Huang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Suilian Luo
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Cong Liu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Guang Shi
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Fengqiang Sun
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Zhenguo Chi
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bingjia Xu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
12
|
Xue C, Jiang Y, Wang H, Du C, Xu L, Li T, Liu M. Excitation‐Dependent Circularly Polarized Luminescence from Helical Assemblies Based on Tartaric Acid‐Derived Acylhydrazones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chenlu Xue
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Yuqian Jiang
- Key laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nano-science and Technology No.11 ZhongGuanCun BeiYiTiao Beijing 100190 China
| | - Han‐Xiao Wang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Cong Du
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Lifei Xu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
13
|
Wang Z, Gao L, Zheng Y, Zhu Y, Zhang Y, Zheng X, Wang C, Li Y, Zhao Y, Yang C. Four‐in‐One Stimulus‐Responsive Long‐Lived Luminescent Systems Based on Pyrene‐Doped Amorphous Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhonghao Wang
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Liang Gao
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Yan Zheng
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Yinyin Zhu
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Yongfeng Zhang
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Xian Zheng
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Chang Wang
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Youbing Li
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| | - Yanli Zhao
- Nanyang Technological University Division of Chemistry and Biological Chemistry 21 Nanyang Link 637371 Singapore SINGAPORE
| | - Chaolong Yang
- Chongqing University of Technology School of Materials Science and Engineering CHINA
| |
Collapse
|
14
|
Yang H, Liu H, Shen Y, Zhang ST, Zhang Q, Song Q, Lv C, Zhang C, Yang B, Ma Y, Zhang Y. Multicolour Fluorescence Based on Excitation-Dependent Electron Transfer Processes in o-Carborane Dyads. Angew Chem Int Ed Engl 2022; 61:e202115551. [PMID: 34989081 DOI: 10.1002/anie.202115551] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Organic materials with excitation wavelength-dependent (Ex-de) emission are highly attractive for anticounterfeiting, optoelectronics and bioassay applications; however, the realization of Ex-de fluorescence, independent of aggregation states, remains a challenge. We herein report a photoinduced electron transfer (PeT) strategy to design Ex-de fluorescence materials by manipulating the relaxation pathways of multiple excited states. As expected, the o-carborane dyad presents a clear Ex-de fluorescence colour in the aggregated states, resulting from the tunable relative intensity of the dual-fluorescence spectra. Taking TP[1]B as an example, the amorphous powders emitted bright blue-violet, white and yellow colours under 390 nm, 365 nm and 254 nm UV illumination, respectively. Importantly, multicolour, flexible and transparent films as well as an anticounterfeiting application using this o-carborane dyad are demonstrated.
Collapse
Affiliation(s)
- Heyi Yang
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou, 313000, P. R. China.,College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014, P. R. China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Yunxia Shen
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014, P. R. China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Qing Zhang
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou, 313000, P. R. China
| | - Qingbao Song
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014, P. R. China
| | - Chunyan Lv
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou, 313000, P. R. China
| | - Cheng Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014, P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Yujian Zhang
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou, 313000, P. R. China
| |
Collapse
|
15
|
Yang Y, Liang Y, Zheng Y, Li J, Wu S, Zhang H, Huang T, Luo S, Liu C, Shi G, Sun F, Chi Z, Xu B. Efficient and Color‐Tunable Dual‐Mode Afterglow from Large‐Area and Flexible Polymer‐Based Transparent Films for Anti‐Counterfeiting and Information Encryption. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yifan Yang
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Yaohui Liang
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Yitao Zheng
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Jian‐An Li
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Shiying Wu
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Huaqing Zhang
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Tepeng Huang
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Suilian Luo
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Cong Liu
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Guang Shi
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Fengqiang Sun
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| | - Zhenguo Chi
- School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Bingjia Xu
- School of Chemistry Key Laboratory of Theoretical Chemistry of Environment Ministry of Education South China Normal University Guangzhou 510006 China
| |
Collapse
|
16
|
Zhang S, Li P, Li H. Time‐ and Excitation Wavelength‐ Dependent Afterglow Supramolecular Assembly for Multi‐Modal Anti‐Counterfeiting Application. ChemistrySelect 2022. [DOI: 10.1002/slct.202200122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shenjie Zhang
- Department: School of Chemical Engineering and Technology Institution: Hebei University of Technology Address: GuangRong Dao 8, Hongqiao District Tianjin 300130 P. R. China
| | - Peng Li
- Department: School of Chemical Engineering and Technology Institution: Hebei University of Technology Address: GuangRong Dao 8, Hongqiao District Tianjin 300130 P. R. China
| | - Huanrong Li
- Department: School of Chemical Engineering and Technology Institution: Hebei University of Technology Address: GuangRong Dao 8, Hongqiao District Tianjin 300130 P. R. China
| |
Collapse
|
17
|
Dai W, Niu X, Wu X, Ren Y, Zhang Y, Li G, Su H, Lei Y, Xiao J, Shi J, Tong B, Cai Z, Dong Y. Halogen Bonding: A New Platform for Achieving Multi-Stimuli-Responsive Persistent Phosphorescence. Angew Chem Int Ed Engl 2022; 61:e202200236. [PMID: 35102661 DOI: 10.1002/anie.202200236] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 12/28/2022]
Abstract
Monotonous luminescence has always been a major factor limiting the application of organic room-temperature phosphorescence (RTP) materials. Enhancing and regulating the intermolecular interactions between the host and guest is an effective strategy to achieve excellent phosphorescence performance. In this study, intermolecular halogen bonding (CN⋅⋅⋅Br) was introduced into the host-guest RTP system. The interaction promoted intersystem crossing and stabilized the triplet excitons, thus helping to achieve strong phosphorescence emission. In addition, the weak intermolecular interaction of halogen bonding is sensitive to external stimuli such as heat, mechanical force, and X-rays. Therefore, the triplet excitons were easily quenched and colorimetric multi-stimuli responsive behaviors were realized, which greatly enriched the luminescence functionality of the RTP materials. This method provides a new platform for the future design of responsive RTP materials based on weak intermolecular interactions between the host and guest molecules.
Collapse
Affiliation(s)
- Wenbo Dai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaowei Niu
- Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Xinghui Wu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Ren
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yongfeng Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Gengchen Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Han Su
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yunxiang Lei
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jiawen Xiao
- Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
18
|
Garain S, Sarkar S, Chandra Garain B, Pati SK, George SJ. Chiral Arylene Diimide Phosphors: Circularly Polarized Ambient Phosphorescence from Bischromophoric Pyromellitic Diimides. Angew Chem Int Ed Engl 2022; 61:e202115773. [PMID: 35015335 DOI: 10.1002/anie.202115773] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Chiral organic phosphors with circularly polarized room-temperature phosphorescence (CPP) provide new prospects to the realm of circularly polarized luminescence (CPL) materials, owing to the long-lived triplet states and persistent emission. Although several molecular designs show efficient room-temperature phosphorescence (RTP), realization of ambient organic CPP remains a formidable challenge. Herein, we introduce a chiral bischromophoric phosphor design to realize ambient CPP emission by appending molecular phosphors to a chiral diaminocyclohexane core. Thus, solution-processable polymer films of the trans-1,2-diaminocyclohexane (DAC) chiral cores with heavy-atom substituted pyromellitic diimide phosphors, exhibits one of the most efficient exclusive CPP emissions with high phosphorescence quantum yield (≈18 % in air and ≈46 % under vacuum) and significant luminescence dissymmetry factor (|glum |≈4.0×10-3 ).
Collapse
Affiliation(s)
- Swadhin Garain
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Souvik Sarkar
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | | | - Swapan K Pati
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India.,Theoretical Sciences Unit, JNCASR, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
19
|
Dai W, Niu X, Wu X, Ren Y, Zhang Y, Li G, Su H, Lei Y, Xiao J, Shi J, Tong B, Cai Z, Dong Y. Halogen Bonding: A New Platform for Achieving Multi‐Stimuli‐Responsive Persistent Phosphorescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenbo Dai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Xiaowei Niu
- Institute of Microstructure and Property of Advanced Materials Beijing Key Lab of Microstructure and Property of Advanced Materials Faculty of Materials and Manufacturing Beijing University of Technology Beijing 100124 China
| | - Xinghui Wu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Yue Ren
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Yongfeng Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Gengchen Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Han Su
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Yunxiang Lei
- School of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 China
| | - Jiawen Xiao
- Institute of Microstructure and Property of Advanced Materials Beijing Key Lab of Microstructure and Property of Advanced Materials Faculty of Materials and Manufacturing Beijing University of Technology Beijing 100124 China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
20
|
Xu W, Chen Y, Lu Y, Qin Y, Zhang H, Xu X, Liu Y. Tunable Second‐Level Room‐Temperature Phosphorescence of Solid Supramolecules between Acrylamide–Phenylpyridium Copolymers and Cucurbit[7]uril. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wen‐Wen Xu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yong Chen
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yi‐Lin Lu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yue‐Xiu Qin
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Hui Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Xiufang Xu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
21
|
Yang H, Liu H, Shen Y, Zhang S, Zhang Q, Song Q, Lv C, Zhang C, Yang B, Ma Y, Zhang Y. Multicolour Fluorescence Based on Excitation‐Dependent Electron Transfer Processes in
o
‐Carborane Dyads. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Heyi Yang
- Department of Materials Chemistry Huzhou University East 2nd Ring Road. No. 759 Huzhou 313000 P. R. China
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road. NO. 18 Hangzhou 310014 P. R. China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| | - Yunxia Shen
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road. NO. 18 Hangzhou 310014 P. R. China
| | - Shi‐tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| | - Qing Zhang
- Department of Materials Chemistry Huzhou University East 2nd Ring Road. No. 759 Huzhou 313000 P. R. China
| | - Qingbao Song
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road. NO. 18 Hangzhou 310014 P. R. China
| | - Chunyan Lv
- Department of Materials Chemistry Huzhou University East 2nd Ring Road. No. 759 Huzhou 313000 P. R. China
| | - Cheng Zhang
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road. NO. 18 Hangzhou 310014 P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou Guangdong P. R. China
| | - Yujian Zhang
- Department of Materials Chemistry Huzhou University East 2nd Ring Road. No. 759 Huzhou 313000 P. R. China
| |
Collapse
|
22
|
Garain S, Sarkar S, Garain BC, Pati SK, George SJ. Chiral Arylene Diimide Phosphors: Circularly Polarized Ambient Phosphorescence from Bischromophoric Pyromellitic Diimides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Swadhin Garain
- JNCASR: Jawaharlal Nehru Centre for Advanced Scientific Research New Chemistry Unit INDIA
| | - Souvik Sarkar
- JNCASR: Jawaharlal Nehru Centre for Advanced Scientific Research New Chemistry Unit INDIA
| | - Bidhan Chandra Garain
- JNCASR: Jawaharlal Nehru Centre for Advanced Scientific Research Theoretical Sciences Unit INDIA
| | - Swapan Kumar Pati
- JNCASR: Jawaharlal Nehru Centre for Advanced Scientific Research Theoretical Sciences Unit INDIA
| | | |
Collapse
|
23
|
Huo M, Dai X, Liu Y. Ultrahigh Supramolecular Cascaded Room‐Temperature Phosphorescence Capturing System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Man Huo
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Xian‐Yin Dai
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
24
|
Xu WW, Chen Y, Lu YL, Qin YX, Zhang H, Xu X, Liu Y. Tunable Second-Level Room-Temperature Phosphorescence of Solid Supramolecules between Acrylamide-Phenylpyridium Copolymers and Cucurbit[7]uril. Angew Chem Int Ed Engl 2021; 61:e202115265. [PMID: 34874598 DOI: 10.1002/anie.202115265] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 12/30/2022]
Abstract
A series of solid supramolecules based on acrylamide-phenylpyridium copolymers with various substituent groups (P-R: R=-CN, -CO2 Et, -Me, -CF3 ) and cucurbit[7]uril (CB[7]) are constructed to exhibit tunable second-level (from 0.9 s to 2.2 s) room-temperature phosphorescence (RTP) in the amorphous state. Compared with other solid supramolecules P-R/CB[7] (R=-CN, -CO2 Et, -Me), P-CF3 /CB[7] displays the longest lifetime (2.2 s), which is probably attributed to the fluorophilic interaction of cucurbiturils leading to a uncommon host-guest interaction between 4-phenylpyridium with -CF3 and CB[7]. Furthermore, the RTP solid supramolecular assembly (donors) can further react with organic dyes Eosin Y or SR101 (acceptors) to form ternary supramolecular systems featuring ultralong phosphorescence energy transfer (PpET) and visible delayed fluorescence (yellow for EY at 568 nm and red for SR101 at 620 nm). Significantly, the ultralong multicolor PpET supramolecular assembly can be further applied in fields of anti-counterfeiting and information encryption and painting.
Collapse
Affiliation(s)
- Wen-Wen Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yi-Lin Lu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yue-Xiu Qin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Hui Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
25
|
Huo M, Dai XY, Liu Y. Ultrahigh Supramolecular Cascaded Room-Temperature Phosphorescence Capturing System. Angew Chem Int Ed Engl 2021; 60:27171-27177. [PMID: 34704341 DOI: 10.1002/anie.202113577] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 11/06/2022]
Abstract
An ultrahigh supramolecular cascaded phosphorescence-capturing aggregate was constructed by multivalent co-assembly of cucurbit[7]uril (CB[7]) and amphipathic sulfonatocalix[4]arene (SC4AD). The initial dibromophthalimide derivative (G) generated a weak phosphorescent emission at 505 nm by host-guest interaction with CB[7], which further assembled with SC4AD to form homogeneously spherical nanoparticles with a dramatic enhancement of both phosphorescence lifetime to 1.13 ms and emission intensity by 40-fold. Notably, this G⊂CB[7]@SC4AD aggregate exhibited efficient phosphorescence energy transfer to Rhodamine B (RhB) and benzothiadiazole (DBT) with high efficiency (ϕET ) of 84.4 % and 76.3 % and an antenna effect (AE) of 289.4 and 119.5, respectively, and then each of these can function as a bridge to further transfer their energy to second near-IR acceptors Cy5 or Nile blue (NiB) to achieve cascaded phosphorescence energy transfer. The final aggregate with long-range effect from 425 nm to 800 nm and long-lived photoluminescence was further employed as an imaging agent for multicolour cell labeling.
Collapse
Affiliation(s)
- Man Huo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
26
|
Tian Y, Yang J, Liu Z, Gao M, Li X, Che W, Fang M, Li Z. Multistage Stimulus-Responsive Room Temperature Phosphorescence Based on Host-Guest Doping Systems. Angew Chem Int Ed Engl 2021; 60:20259-20263. [PMID: 34236129 DOI: 10.1002/anie.202107639] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 12/11/2022]
Abstract
Compared with inorganic long-lasting luminescent materials, organic room temperature phosphorescent (RTP) ones show several advantages, such as flexibility, transparency, solubility and color adjustability. However, organic RTP materials close to commercialization are still to be developed. In this work, we developed a new host-guest doping system with stimulus-responsive RTP characteristics, in which triphenylphosphine oxide (OPph3 ) acted host and benzo(dibenzo)phenothiazine dioxide derivatives as guests. Turn-on RTP effect was realized by mixing them together through co-crystallization or grinding, in which the efficient energy transfer from host to guest and the strong intersystem crossing (ISC) ability of the guest have played significant role. Further on, multistage stimulus-responsive RTP characteristics from grinding to chemical stimulus were achieved via introducing pyridine group into the guest molecule. In addition, the anti-counterfeiting printings were realized for these materials through various methods, including stylus printing, thermal printing and inkjet printing, which brings RTP materials closer to commercialization.
Collapse
Affiliation(s)
- Yu Tian
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Zhenjiang Liu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Mingxue Gao
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Xiaoning Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Weilong Che
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Manman Fang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China.,Department of Chemistry, Wuhan University, Wuhan, 430072, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
27
|
Tian Y, Yang J, Liu Z, Gao M, Li X, Che W, Fang M, Li Z. Multistage Stimulus‐Responsive Room Temperature Phosphorescence Based on Host–Guest Doping Systems. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107639] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Tian
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Jie Yang
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Zhenjiang Liu
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Mingxue Gao
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Xiaoning Li
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Weilong Che
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Manman Fang
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Zhen Li
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
- Department of Chemistry Wuhan University Wuhan 430072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
28
|
Garain S, Garain BC, Eswaramoorthy M, Pati SK, George SJ. Light-Harvesting Supramolecular Phosphors: Highly Efficient Room Temperature Phosphorescence in Solution and Hydrogels. Angew Chem Int Ed Engl 2021; 60:19720-19724. [PMID: 34189815 DOI: 10.1002/anie.202107295] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/21/2021] [Indexed: 11/10/2022]
Abstract
Solution phase room-temperature phosphorescence (RTP) from organic phosphors is seldom realized. Herein we report one of the highest quantum yield solution state RTP (ca. 41.8 %) in water, from a structurally simple phthalimide phosphor, by employing an organic-inorganic supramolecular scaffolding strategy. We further use these supramolecular hybrid phosphors as a light-harvesting scaffold to achieve delayed fluorescence from orthogonally anchored Sulforhodamine acceptor dyes via an efficient triplet to singlet Förster resonance energy transfer (TS-FRET), which is rarely achieved in solution. Electrostatic cross-linking of the inorganic scaffold at higher concentrations further facilitates the formation of self-standing hydrogels with efficient RTP and energy-transfer mediated long-lived fluorescence.
Collapse
Affiliation(s)
- Swadhin Garain
- New Chemistry Unit and School of Advanced Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | | | - Muthusamy Eswaramoorthy
- New Chemistry Unit and School of Advanced Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India.,Chemistry and Physics of Materials Unit, JNCASR, India
| | - Swapan K Pati
- New Chemistry Unit and School of Advanced Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India.,Theoretical Science Unit, JNCASR, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
29
|
Garain S, Garain BC, Eswaramoorthy M, Pati SK, George SJ. Light‐Harvesting Supramolecular Phosphors: Highly Efficient Room Temperature Phosphorescence in Solution and Hydrogels. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Swadhin Garain
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | | | - Muthusamy Eswaramoorthy
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
- Chemistry and Physics of Materials Unit JNCASR India
| | - Swapan K. Pati
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
- Theoretical Science Unit JNCASR India
| | - Subi J. George
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| |
Collapse
|
30
|
Garain S, Kuila S, Garain BC, Kataria M, Borah A, Pati SK, George SJ. Arylene Diimide Phosphors: Aggregation Modulated Twin Room Temperature Phosphorescence from Pyromellitic Diimides. Angew Chem Int Ed Engl 2021; 60:12323-12327. [DOI: 10.1002/anie.202101538] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Swadhin Garain
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Suman Kuila
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Bidhan Chandra Garain
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
- Theoretical Science Unit Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) India
| | - Meenal Kataria
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Aditya Borah
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | - Swapan K. Pati
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
- Theoretical Science Unit Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) India
| | - Subi J. George
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| |
Collapse
|
31
|
Garain S, Kuila S, Garain BC, Kataria M, Borah A, Pati SK, George SJ. Arylene Diimide Phosphors: Aggregation Modulated Twin Room Temperature Phosphorescence from Pyromellitic Diimides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101538] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Swadhin Garain
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Suman Kuila
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Bidhan Chandra Garain
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
- Theoretical Science Unit Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) India
| | - Meenal Kataria
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Aditya Borah
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | - Swapan K. Pati
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
- Theoretical Science Unit Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) India
| | - Subi J. George
- New Chemistry Unit and School of Advanced Material (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| |
Collapse
|
32
|
Lin X, Wang J, Ding B, Ma X, Tian H. Tunable‐Emission Amorphous Room‐Temperature Phosphorescent Polymers Based on Thermoreversible Dynamic Covalent Bonds. Angew Chem Int Ed Engl 2020; 60:3459-3463. [DOI: 10.1002/anie.202012298] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/08/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Xiaohan Lin
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Meilong Road 130 Shanghai 200237 China
| | - Jie Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Meilong Road 130 Shanghai 200237 China
| | - Bingbing Ding
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Meilong Road 130 Shanghai 200237 China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Meilong Road 130 Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Meilong Road 130 Shanghai 200237 China
| |
Collapse
|
33
|
Lin X, Wang J, Ding B, Ma X, Tian H. Tunable‐Emission Amorphous Room‐Temperature Phosphorescent Polymers Based on Thermoreversible Dynamic Covalent Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaohan Lin
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Meilong Road 130 Shanghai 200237 China
| | - Jie Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Meilong Road 130 Shanghai 200237 China
| | - Bingbing Ding
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Meilong Road 130 Shanghai 200237 China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Meilong Road 130 Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science & Technology Meilong Road 130 Shanghai 200237 China
| |
Collapse
|
34
|
Yin Z, Gu M, Ma H, Jiang X, Zhi J, Wang Y, Yang H, Zhu W, An Z. Molecular Engineering through Control of Structural Deformation for Highly Efficient Ultralong Organic Phosphorescence. Angew Chem Int Ed Engl 2020; 60:2058-2063. [DOI: 10.1002/anie.202011830] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Zheng Yin
- National Experimental Demonstration Center for Materials Science and Engineering Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications School of Materials Science & Engineering Changzhou University Changzhou 213164 China
- College of Chemistry Xiangtan University Xiangtan 411105 China
| | - Mingxing Gu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Xueyan Jiang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Jiahuan Zhi
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Yafei Wang
- National Experimental Demonstration Center for Materials Science and Engineering Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications School of Materials Science & Engineering Changzhou University Changzhou 213164 China
| | - Huifang Yang
- National Experimental Demonstration Center for Materials Science and Engineering Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications School of Materials Science & Engineering Changzhou University Changzhou 213164 China
| | - Weiguo Zhu
- National Experimental Demonstration Center for Materials Science and Engineering Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications School of Materials Science & Engineering Changzhou University Changzhou 213164 China
- College of Chemistry Xiangtan University Xiangtan 411105 China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| |
Collapse
|
35
|
Yin Z, Gu M, Ma H, Jiang X, Zhi J, Wang Y, Yang H, Zhu W, An Z. Molecular Engineering through Control of Structural Deformation for Highly Efficient Ultralong Organic Phosphorescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zheng Yin
- National Experimental Demonstration Center for Materials Science and Engineering Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications School of Materials Science & Engineering Changzhou University Changzhou 213164 China
- College of Chemistry Xiangtan University Xiangtan 411105 China
| | - Mingxing Gu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Xueyan Jiang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Jiahuan Zhi
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Yafei Wang
- National Experimental Demonstration Center for Materials Science and Engineering Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications School of Materials Science & Engineering Changzhou University Changzhou 213164 China
| | - Huifang Yang
- National Experimental Demonstration Center for Materials Science and Engineering Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications School of Materials Science & Engineering Changzhou University Changzhou 213164 China
| | - Weiguo Zhu
- National Experimental Demonstration Center for Materials Science and Engineering Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications School of Materials Science & Engineering Changzhou University Changzhou 213164 China
- College of Chemistry Xiangtan University Xiangtan 411105 China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| |
Collapse
|
36
|
Li W, Huang Q, Yang Z, Zhang X, Ma D, Zhao J, Xu C, Mao Z, Zhang Y, Chi Z. Activating Versatile Mechanoluminescence in Organic Host–Guest Crystals by Controlling Exciton Transfer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wenlang Li
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films State Key Laboratory of OEMT School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Qiuyi Huang
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films State Key Laboratory of OEMT School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Zhan Yang
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films State Key Laboratory of OEMT School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Xiaoyue Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Center for Physical Mechanics and Biophysics School of Physics Sun Yat-sen University Guangzhou 510275 China
| | - Dongyu Ma
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films State Key Laboratory of OEMT School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Juan Zhao
- School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275 China
| | - Chao Xu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education School of Chemistry South China Normal University Guangzhou 510006 China
| | - Zhu Mao
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films State Key Laboratory of OEMT School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Yi Zhang
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films State Key Laboratory of OEMT School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Zhenguo Chi
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films State Key Laboratory of OEMT School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
37
|
Li W, Huang Q, Yang Z, Zhang X, Ma D, Zhao J, Xu C, Mao Z, Zhang Y, Chi Z. Activating Versatile Mechanoluminescence in Organic Host–Guest Crystals by Controlling Exciton Transfer. Angew Chem Int Ed Engl 2020; 59:22645-22651. [DOI: 10.1002/anie.202010166] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Wenlang Li
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films State Key Laboratory of OEMT School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Qiuyi Huang
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films State Key Laboratory of OEMT School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Zhan Yang
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films State Key Laboratory of OEMT School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Xiaoyue Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Center for Physical Mechanics and Biophysics School of Physics Sun Yat-sen University Guangzhou 510275 China
| | - Dongyu Ma
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films State Key Laboratory of OEMT School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Juan Zhao
- School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275 China
| | - Chao Xu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education School of Chemistry South China Normal University Guangzhou 510006 China
| | - Zhu Mao
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films State Key Laboratory of OEMT School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Yi Zhang
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films State Key Laboratory of OEMT School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Zhenguo Chi
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films State Key Laboratory of OEMT School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
38
|
Zhang Z, Xu W, Xu W, Niu J, Sun X, Liu Y. A Synergistic Enhancement Strategy for Realizing Ultralong and Efficient Room‐Temperature Phosphorescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008516] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhi‐Yuan Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Wen‐Wen Xu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Wen‐Shi Xu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Jie Niu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Xiao‐Han Sun
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
39
|
Zhang Z, Xu W, Xu W, Niu J, Sun X, Liu Y. A Synergistic Enhancement Strategy for Realizing Ultralong and Efficient Room‐Temperature Phosphorescence. Angew Chem Int Ed Engl 2020; 59:18748-18754. [DOI: 10.1002/anie.202008516] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/02/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Zhi‐Yuan Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Wen‐Wen Xu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Wen‐Shi Xu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Jie Niu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Xiao‐Han Sun
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
40
|
Lei Y, Dai W, Guan J, Guo S, Ren F, Zhou Y, Shi J, Tong B, Cai Z, Zheng J, Dong Y. Wide‐Range Color‐Tunable Organic Phosphorescence Materials for Printable and Writable Security Inks. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003585] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yunxiang Lei
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 China
| | - Wenbo Dai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 China
| | - Jianxin Guan
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Shuai Guo
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 China
| | - Fei Ren
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 China
| | - Yudai Zhou
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 China
| | - Junrong Zheng
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
41
|
Lei Y, Dai W, Guan J, Guo S, Ren F, Zhou Y, Shi J, Tong B, Cai Z, Zheng J, Dong Y. Wide-Range Color-Tunable Organic Phosphorescence Materials for Printable and Writable Security Inks. Angew Chem Int Ed Engl 2020; 59:16054-16060. [PMID: 32500576 DOI: 10.1002/anie.202003585] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 12/25/2022]
Abstract
Organic materials with long-lived, color-tunable phosphorescence are potentially useful for optical recording, anti-counterfeiting, and bioimaging. Herein, we develop a series of novel host-guest organic phosphors allowing dynamic color tuning from the cyan (502 nm) to orange red (608 nm). Guest materials are employed to tune the phosphorescent color, while the host materials interact with the guest to activate the phosphorescence emission. These organic phosphors have an ultra-long lifetime of 0.7 s and a maximum phosphorescence efficiency of 18.2 %. Although color-tunable inks have already been developed using visible dyes, solution-processed security inks that are temperature dependent and display time-resolved printed images are unprecedented. This strategy can provide a crucial step towards the next-generation of security technologies for information handling.
Collapse
Affiliation(s)
- Yunxiang Lei
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Wenbo Dai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jianxin Guan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Shuai Guo
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fei Ren
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yudai Zhou
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Junrong Zheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|