1
|
Gao M, Wei D, Chen S, Qin B, Wang Y, Li Z, Yu H. Selection of RNA-Cleaving TNA Enzymes for Cellular Mg 2+ Imaging. Chembiochem 2023; 24:e202200651. [PMID: 36513605 DOI: 10.1002/cbic.202200651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Catalytic DNA-based fluorescent sensors have enabled cellular imaging of metal ions such as Mg2+ . However, natural DNA is prone to nuclease-mediated degradation. Here, we report the in vitro selection of threose nucleic acid enzymes (TNAzymes) with RNA endonuclease activities. One such TNAzyme, T17-22, catalyzes a site-specific RNA cleavage reaction with a kcat of 0.017 min-1 and KM of 675 nM. A fluorescent sensor based on T17-22 responds to an increasing concentration of Mg2+ with a limit of detection at 0.35 mM. This TNAzyme-based sensor also allows cellular imaging of Mg2+ . This work presents the first proof-of-concept demonstration of using a TNA catalyst in cellular metal ion imaging.
Collapse
Affiliation(s)
- Mingmei Gao
- State Key Laboratory of Coordination Chemistry Department of Biomedical Engineering College of Engineering and Applied Sciences Chemistry and Biomedicine Innovation Center (ChemBIC) Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Dongying Wei
- State Key Laboratory of Coordination Chemistry Department of Biomedical Engineering College of Engineering and Applied Sciences Chemistry and Biomedicine Innovation Center (ChemBIC) Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Siqi Chen
- State Key Laboratory of Coordination Chemistry Department of Biomedical Engineering College of Engineering and Applied Sciences Chemistry and Biomedicine Innovation Center (ChemBIC) Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Bohe Qin
- State Key Laboratory of Coordination Chemistry Department of Biomedical Engineering College of Engineering and Applied Sciences Chemistry and Biomedicine Innovation Center (ChemBIC) Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Yueyao Wang
- State Key Laboratory of Coordination Chemistry Department of Biomedical Engineering College of Engineering and Applied Sciences Chemistry and Biomedicine Innovation Center (ChemBIC) Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Zhe Li
- State Key Laboratory of Analytical Chemistry for Life Science Department of Biomedical Engineering College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Hanyang Yu
- State Key Laboratory of Coordination Chemistry Department of Biomedical Engineering College of Engineering and Applied Sciences Chemistry and Biomedicine Innovation Center (ChemBIC) Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
2
|
Huang Z, Wang X, Wu Z, Jiang JH. Recent Advances on DNAzyme-Based Sensing. Chem Asian J 2022; 17:e202101414. [PMID: 35156764 DOI: 10.1002/asia.202101414] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/09/2022] [Indexed: 11/08/2022]
Abstract
DNAzymes are functional nucleic acid with catalytic activity. Owing to the high sensitivity, excellent programmability, and flexible obtainment through in vitro selection, RNA-cleaving DNAzymes have attracted increasing interest in developing DNAzyme-based sensors. In this review, we summarize the recent advances on DNAzyme-based sensing applications. We initially conclude two general strategies to expand the library of DNAzymes, in vitro selection to discover new DNAzymes towards different targets of interest and chemical modifications to endue the existing DNAzymes with new function or properties. We then discuss the recent applications of DNAzyme-based sensors for the detection of a variety of important biomolecules both in vitro and in vivo . Finally, perspectives on the challenges and future directions in the development of DNAzyme-based sensors are provided.
Collapse
Affiliation(s)
- Zhimei Huang
- Hunan University, College of Chemistry and Chemical Engineering, CHINA
| | - Xiangnan Wang
- Hunan University of Technology and Business, College of Science, CHINA
| | - Zhenkun Wu
- Hunan University, State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics and College of Chemistry and Chemical Engineering, South of Lushan Road, 410082, Changsha, CHINA
| | - Jian-Hui Jiang
- Hunan University, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics; College of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|
3
|
Xiang Z, Zhao J, Yi D, Di Z, Li L. Peptide Nucleic Acid (PNA)‐Guided Peptide Engineering of an Aptamer Sensor for Protease‐Triggered Molecular Imaging. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhichu Xiang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Deyu Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhenghan Di
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
4
|
Xiang Z, Zhao J, Yi D, Di Z, Li L. PNA-Guided Peptide Engineering of Aptamer Sensor for Protease-Unlocked Molecular Imaging. Angew Chem Int Ed Engl 2021; 60:22659-22663. [PMID: 34355486 DOI: 10.1002/anie.202106639] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/22/2021] [Indexed: 11/11/2022]
Abstract
Protease-triggered control of functional DNA has remained unachieved, leaving a significant gap in activatable DNA biotechnology. Here we disclose the design of a protease-activatable aptamer technology that can perform molecular sensing and imaging function in a tumor-specific manner. The system is constructed by locking structure-switching activity of aptamer using a rationally designed PNA-peptide-PNA triblock copolymer. Highly selective cleavage of the peptide substrate is achieved by protease-mediated enzymatic reaction that result in reduced binding affinity of PNA to the aptamer module, with the subsequently recovering its biosensing function. We demonstrated that the DNA/peptide/PNA hybrid system not only allows for tumor cell-selective ATP imaging in vitro , but it also produce a fluorescent signal in vivo with improved tumor specificity. This work illustrates the potential of bridging the gap between functional DNA field and peptide area for precise biomedical applications.
Collapse
Affiliation(s)
- Zhichu Xiang
- NCNST: National Center for Nanoscience and Technology, the CAS key lab, CHINA
| | - Jian Zhao
- NCNST: National Center for Nanoscience and Technology, the CAS key lab, CHINA
| | - Deyu Yi
- NCNST: National Center for Nanoscience and Technology, the CAS key lab, CHINA
| | - Zhenghan Di
- NCNST: National Center for Nanoscience and Technology, the CAS key lab, CHINA
| | - Lele Li
- National Center for Nanoscience and Technology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, 11 ZhongGuanCun BeiYiTiao, Haidian District, 100190, Beijing, CHINA
| |
Collapse
|
5
|
XING S, HE M, LIU T, YONG W, ZHANG F. [Research progress of solid phase extraction materials in the application of metal ion pretreatment]. Se Pu 2021; 39:455-462. [PMID: 34227329 PMCID: PMC9421574 DOI: 10.3724/sp.j.1123.2020.07004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 11/25/2022] Open
Abstract
Monitoring of trace heavy metal pollutants released during industrial and agricultural processes is essential because of their widespread distribution in the environment and health hazards. Several techniques, including inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-optical emission spectrometry (ICP-OES), electrothermal atomic absorption (ETAAS), and flame atomic absorption spectrometry (FAAS), have been proposed for the determination of heavy metals in serum, plasma, whole blood, and food. All these techniques have earned robust recognition in the field of trace heavy metals and have many advantages such as multi-elemental analysis capability, large dynamic linear range, low detection limits, and high productivity. Nevertheless, most of the recommended techniques require digestion of the sample and extraction with an organic solvent for isolation of the metal ion from the sample solution prior to analysis. Despite improvements in the performance of modern analytical instruments, the direct determination of heavy metal ions in real samples is difficult because of their low concentration levels and matrix interference. Thus, extraction and clean-up steps are required for pre-concentration of the analyte, so that detection and elimination of the interfering matrix component are possible. Solid-phase extraction (SPE) is one of the popular metal ion pretreatment methods. The advantages of SPE include easy cartridge/column regeneration, high analytical frequency, and high preconcentration factors for sorbents with high adsorption capacities. On the other hand, when the analytes are extracted from a complex matrix such as serum and meat samples, large amounts of proteins from the samples can be retained on the sorbent surface, obstructing the binding sites on the sorbent and leading to poor precision and accuracy. The key to metal ion detection is the development of new SPE materials with high efficiency and enrichment factors as well as an effective pretreatment technology. Nanomaterials such as restricted-access carbon nanotubes, nanoadsorbents, nanoparticle carriers, and magnetic nanoparticles have shown great promise in advancing biomedical and environmental analysis because of the unique properties originating from their ultrafine dimensions. Nanomaterials can provide large specific surface areas and tunable functional groups to facilitate metal ion absorption. They could also possess superior optical properties and allow for high sensitivity in simple fluorescent or colorimetric detection methods. Owing to their excellent mechanical and chemical stability, polymer materials have been of great interest as adsorbents for the SPE of metal ions from solution. Moreover, a designed polymeric material can show triple functionality such as physical adsorption, chelate formation, and ion exchange for the target metal ions. A dual-functional nanomaterial-DNAzyme platform can simultaneously allow for the sensitive detection and effective removal of heavy metal ions in water. Thus, this platform can serve as a simple, cost-effective tool for rapid and accurate metal quantification in the determination of human metal exposure and inspection of environmental contamination. Furthermore, the new photocaged chelator can uncage and release the combined metal ions into an aqueous solution that is free of the other components of the matrix. In this manner, we can develop diagnostic tests for metal ions that are often difficult to detect using other methods. In this paper, the characteristics of new SPE materials, including nanomaterials, polymer materials, and functional materials as well as advances in their applications to the preparation of complex samples are summarized, and the direction for future development is proposed.
Collapse
Affiliation(s)
- Shige XING
- 中国检验检疫科学研究院食品安全研究所, 北京 100176
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Muyi HE
- 中国检验检疫科学研究院食品安全研究所, 北京 100176
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Tong LIU
- 中国检验检疫科学研究院食品安全研究所, 北京 100176
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Wei YONG
- 中国检验检疫科学研究院食品安全研究所, 北京 100176
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Feng ZHANG
- 中国检验检疫科学研究院食品安全研究所, 北京 100176
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
6
|
Xing S, Lin Y, Cai L, Basa PN, Shigemoto AK, Zheng C, Zhang F, Burdette SC, Lu Y. Detection and Quantification of Tightly Bound Zn 2+ in Blood Serum Using a Photocaged Chelator and a DNAzyme Fluorescent Sensor. Anal Chem 2021; 93:5856-5861. [PMID: 33787228 PMCID: PMC9169884 DOI: 10.1021/acs.analchem.1c00140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNAzymes have emerged as a powerful class of sensors for metal ions due to their high selectivity over a wide range of metal ions, allowing for on-site and real-time detection. Despite much progress made in this area, detecting and quantifying tightly bound metal ions, such as those in the blood serum, remain a challenge because the DNAzyme sensors reported so far can detect only mobile metal ions that are accessible to bind the DNAzymes. To overcome this major limitation, we report the use of a photocaged chelator, XDPAdeCage to extract the Zn2+ from the blood serum and then release the chelated Zn2+ into a buffer using 365 nm light for quantification by an 8-17 DNAzyme sensor. Protocols to chelate, uncage, extract, and detect metal ions in the serum have been developed and optimized. Because DNAzyme sensors for other metal ions have already been reported and more DNAzyme sensors can be obtained using in vitro selection, the method reported in this work will significantly expand the applications of the DNAzyme sensors from sensing metal ions that are not only free but also bound to other biomolecules in biological and environmental samples.
Collapse
Affiliation(s)
- Shige Xing
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Yao Lin
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Forensic Analytical Toxicology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liangyuan Cai
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Prem N Basa
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609-2280, United States
| | - Austin K Shigemoto
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609-2280, United States
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Shawn C Burdette
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609-2280, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Yi D, Zhao J, Li L. An Enzyme‐Activatable Engineered DNAzyme Sensor for Cell‐Selective Imaging of Metal Ions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Deyu Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100190 China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100190 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
8
|
Yi D, Zhao J, Li L. An Enzyme‐Activatable Engineered DNAzyme Sensor for Cell‐Selective Imaging of Metal Ions. Angew Chem Int Ed Engl 2021; 60:6300-6304. [DOI: 10.1002/anie.202015979] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Deyu Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100190 China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100190 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
9
|
Debiais M, Lelievre A, Vasseur J, Müller S, Smietana M. Boronic Acid-Mediated Activity Control of Split 10-23 DNAzymes. Chemistry 2021; 27:1138-1144. [PMID: 33058268 PMCID: PMC7839725 DOI: 10.1002/chem.202004227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/11/2022]
Abstract
The 10-23 DNAzyme is an artificially developed Mg2+ -dependent catalytic oligonucleotide that can cleave an RNA substrate in a sequence-specific fashion. In this study, new split 10-23 DNAzymes made of two nonfunctional fragments, one of which carries a boronic acid group at its 5' end, while the other has a ribonucleotide at its 3' end, were designed. Herein it is demonstrated that the addition of Mg2+ ions leads to assembly of the fragments, which in turn induces the formation of a new boronate internucleoside linkage that restores the DNAzyme activity. A systematic evaluation identified the best-performing system. The results highlight key features for efficient control of DNAzyme activity through the formation of boronate linkages.
Collapse
Affiliation(s)
- Mégane Debiais
- Institut des Biomolécules Max MousseronUniversité de MontpellierCNRSENSCMPlace Eugène Bataillon34095MontpellierFrance
| | - Amandine Lelievre
- University GreifswaldInstitute for BiochemistryFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Jean‐Jacques Vasseur
- Institut des Biomolécules Max MousseronUniversité de MontpellierCNRSENSCMPlace Eugène Bataillon34095MontpellierFrance
| | - Sabine Müller
- University GreifswaldInstitute for BiochemistryFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Michael Smietana
- Institut des Biomolécules Max MousseronUniversité de MontpellierCNRSENSCMPlace Eugène Bataillon34095MontpellierFrance
| |
Collapse
|