1
|
Jung Y, Yoo SY, Jin Y, You J, Han S, Yu J, Park Y, Cho SH. Iridium-Catalyzed Chemo-, Diastereo-, and Enantioselective Allyl-Allyl Coupling: Accessing All Four Stereoisomers of (E)-1-Boryl-Substituted 1,5-Dienes by Chirality Pairing. Angew Chem Int Ed Engl 2023; 62:e202218794. [PMID: 36718077 DOI: 10.1002/anie.202218794] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Here, we report a highly chemo-, diastereo-, and enantioselective allyl-allyl coupling between branched allyl alcohols and α-silyl-substituted allylboronate esters, catalyzed by a chiral iridium complex. The α-silyl-substituted allylboronate esters can be chemoselectively coupled with allyl electrophiles, affording a diverse set of enantioenriched (E)-1-boryl-substituted 1,5-dienes in good yields, with excellent stereoselectivity. By permuting the chiral iridium catalysts and the substrates, we efficiently and selectively obtained all four stereoisomers bearing two consecutive chiral centers. Mechanistic studies via density functional theory calculations revealed the origins of the diastereo- and chemoselectivities, indicating the pivotal roles of the steric interaction, the β-silicon effect, and a rapid desilylation process. Additional synthetic modifications for preparing a variety of enantioenriched compounds containing contiguous chiral centers are also included.
Collapse
Affiliation(s)
- Yongsuk Jung
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| | - Seok Yeol Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Republic of, Korea
| | - Yonghoon Jin
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| | - Jaehyun You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Republic of, Korea
| | - Seungcheol Han
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| | - Jeongwoo Yu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| | - Yoonsu Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Republic of, Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| |
Collapse
|
2
|
Xie JH, Hou YM, Feng Z, You SL. Stereodivergent Construction of 1,3-Chiral Centers via Tandem Asymmetric Conjugate Addition and Allylic Substitution Reaction. Angew Chem Int Ed Engl 2023; 62:e202216396. [PMID: 36597878 DOI: 10.1002/anie.202216396] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Herein, we report a synthesis of cyclohexanones bearing multi-continuous stereocenters by combining copper-catalyzed asymmetric conjugate addition of dialkylzinc reagents to cyclic enones with iridium-catalyzed asymmetric allylic substitution reaction. Good to excellent yields, diastereoselectivity and enantioselectivity can be obtained. Unlike the stereodivergent construction of adjacent stereocenters (1,2-position) reported in the literature, the current reaction can achieve the stereodivergent construction of nonadjacent stereocenters (1,3-position) by a proper combination of two chiral catalysts with different enantiomers.
Collapse
Affiliation(s)
- Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Yi-Ming Hou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Zuolijun Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| |
Collapse
|
3
|
Shimizu Y, Kanai M. Boron-Catalyzed α-Functionalizations of Carboxylic Acids. CHEM REC 2023:e202200273. [PMID: 36639245 DOI: 10.1002/tcr.202200273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Indexed: 01/15/2023]
Abstract
Catalytic, chemoselective, and asymmetric α-functionalizations of carboxylic acids promise up-grading simple feedstock materials to value-added functional molecules, as well as late-stage structural diversifications of multifunctional molecules, such as drugs and their leads. In this personal account, we describe boron-catalyzed α-functionalizations of carboxylic acids developed in our group (five reaction types). The reversible boron carboxylate formation is key to the acidification of the α-protons and enolization using mild organic bases, allowing for chemoselective and asymmetric bond formations of carboxylic acids. The ligand effects on reactivity and stereoselectivity, substrate scopes, and mechanistic insights are summarized.
Collapse
Affiliation(s)
- Yohei Shimizu
- Department of Chemistry, Faculty of Sciences Hokkaido University, Kita 10 Nishi 8, 060-0810, Kita-ku, Sapporo, Hokkaido, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 10 Nishi 8, 001-0021, Kita-ku, Sapporo, Hokkaido, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| |
Collapse
|
4
|
Chang X, Cheng X, Liu X, Fu C, Wang W, Wang C. Stereodivergent Construction of 1,4‐Nonadjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206517. [DOI: 10.1002/anie.202206517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Xin Chang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Xiang Cheng
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Xue‐Tao Liu
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Cong Fu
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Wei‐Yi Wang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
| | - Chun‐Jiang Wang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education Wuhan University Wuhan 430072 China
- State Key Laboratory of Elemento-organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
5
|
Zhu M, Wang P, Zhang Q, Tang W, Zi W. Diastereodivergent Aldol-Type Coupling of Alkoxyallenes with Pentafluorophenyl Esters Enabled by Synergistic Palladium/Chiral Lewis Base Catalysis. Angew Chem Int Ed Engl 2022; 61:e202207621. [PMID: 35713176 DOI: 10.1002/anie.202207621] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 12/15/2022]
Abstract
As a fundamental and synthetically useful C-C bond formation reaction, the aldol reaction is one of the most versatile transformations in organic synthesis. However, despite extensive research on asymmetric versions of the reaction, a unified method for stereoselective access to the complementary syn and anti diastereomeric products remains to be developed. In this study, we developed a synergistic palladium/chiral Lewis base system that overcomes the inherent diastereoselectivity bias of aldol reactions and, as a result, allowed us to achieve the first diastereodivergent coupling reactions of alkoxyallenes with pentafluorophenol esters. Computational studies suggest a mechanism involving an intermolecular protonative hydropalladation pathway rather than a palladium-hydride migratory insertion pathway. The origin of the stereochemistry for this synergistic catalysis system is rationalized by DFT calculations.
Collapse
Affiliation(s)
- Minghui Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Peixin Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai, 200032, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China
| |
Collapse
|
6
|
Chang X, Cheng X, Liu XT, Fu C, Wang WY, Wang CJ. Stereodivergent Construction of 1,4‐Nonadjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin Chang
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Xiang Cheng
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Xue-Tao Liu
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Cong Fu
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Wei-Yi Wang
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Chun-Jiang Wang
- Wuhan University Department of Chemistry Bayi road 430072 wuhan CHINA
| |
Collapse
|
7
|
Zhu M, Wang P, Zhang Q, Tang W, Zi W. Diastereodivergent Aldol‐Type Coupling of Alkoxyallenes with Pentafluorophenyl Esters Enabled by Synergistic Palladium/Chiral Lewis Base Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Minghui Zhu
- Nankai University College of Chemistry State Key Laboratory and Institute of Elemento-Organic Chemistry CHINA
| | - Peixin Wang
- Nankai University College of Chemistry State Key Laboratory and Institute of Elemento-Organic Chemistry CHINA
| | - Qinglong Zhang
- Nankai University College of Chemistry State Key Laboratory and Institute of Elemento-Organic Chemistry 94 Weijin Road 300071 Tianjin CHINA
| | - Wenjun Tang
- Chinese Academy of Sciences Shanghai Institute of Organic Chemistry State Key Laboratory of Bio-Organic and Natural Products Chemistry CHINA
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry Chemistry Department of Nankai University 94 Weijin Rd. 300071 Tianjin CHINA
| |
Collapse
|
8
|
Zhang P, Wang J, Robertson ZR, Newhouse TR. Coordination‐Controlled Nickel‐Catalyzed Benzylic Allylation of Unactivated Electron‐Deficient Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202200602. [DOI: 10.1002/anie.202200602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Pengpeng Zhang
- Department of Chemistry Yale University 225 Prospect Street, PO Box 208107 New Haven CT 06511 USA
| | - Jin Wang
- Department of Chemistry Yale University 225 Prospect Street, PO Box 208107 New Haven CT 06511 USA
| | - Zoe R. Robertson
- Department of Chemistry Yale University 225 Prospect Street, PO Box 208107 New Haven CT 06511 USA
| | - Timothy R. Newhouse
- Department of Chemistry Yale University 225 Prospect Street, PO Box 208107 New Haven CT 06511 USA
| |
Collapse
|
9
|
Zhou FY, Jiao L. Asymmetric Defluoroallylation of 4-Trifluoromethylpyridines Enabled by Umpolung C-F Bond Activation. Angew Chem Int Ed Engl 2022; 61:e202201102. [PMID: 35274435 DOI: 10.1002/anie.202201102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 12/30/2022]
Abstract
Carbon-fluorine bond activation of the trifluoromethyl group represents an important approach to fluorine-containing molecules. While selective defluorinative functionalization reactions of CF3 -containing substrates have been achieved by invoking difluorocarbocation, difluorocarboradical, or difluoroorganometallic species as the key intermediates, the transformations via fluorocarbanion mechanism only achieved limited success. Furthermore, the enantioselective defluorinative transformation of the CF3 group remained a formidable challenge. Here we report a defluorinative functionalization reaction of 4-trifluoromethylpyridines involving difluoro(pyrid-4-yl)methyl anion as the key intermediate, which was developed based upon our previous studies on the N-boryl pyridyl anion chemistry. In particular, asymmetric defluoroallylation of 4-trifluoromethylpyridines and -pyrimidines could be achieved by using Ir-catalysis to forge a difluoroalkyl-substituted chiral center.
Collapse
Affiliation(s)
- Fei-Yu Zhou
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Zhou FY, Jiao L. Asymmetric Defluoroallylation of 4‐Trifluoromethylpyridines Enabled by Umpolung C‐F Bond Activation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fei-Yu Zhou
- Tsinghua University Department of Chemistry CHINA
| | - Lei Jiao
- Tsinghua University Department of Chemistry Meng Man Wai Building of Science and Technology, RM S-907Tsinghua University 100084 Beijing CHINA
| |
Collapse
|
11
|
Zhang P, Wang J, Robertson ZR, Newhouse TR. Coordination‐Controlled Nickel‐Catalyzed Benzylic Allylation of Unactivated Electron‐Deficient Heterocycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Jin Wang
- Yale University Department of Chemistry UNITED STATES
| | | | - Timothy R. Newhouse
- Yale University Department of Chemistry 225 Prospect St. 06511 New Haven UNITED STATES
| |
Collapse
|
12
|
Butcher TW, Amberg WM, Hartwig JF. Transition‐Metal‐Catalyzed Monofluoroalkylation: Strategies for the Synthesis of Alkyl Fluorides by C−C Bond Formation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Trevor W. Butcher
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Willi M. Amberg
- Department of Chemistry and Applied Biosciences Laboratory of Organic Chemistry ETH Zϋrich 8093 Zϋrich Switzerland
| | - John F. Hartwig
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
13
|
Shao N, Liu X, Monnier V, Charles L, Rodriguez J, Bressy C, Quintard A. Enantioselective Synthesis of Acyclic Stereotriads Featuring Fluorinated Tetrasubstituted Stereocenters. Chemistry 2021; 28:e202103874. [PMID: 34821417 DOI: 10.1002/chem.202103874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/07/2022]
Abstract
Elaboration of enantioenriched complex acyclic stereotriads represents a challenge for modern synthesis even more when fluorinated tetrasubstituted stereocenters are targeted. We have been able to develop a simple strategy in a sequence of two unprecedented steps combining a diastereoselective aldol-Tishchenko reaction and an enantioselective organocatalyzed kinetic resolution. The aldol-Tishchenko reaction directly generates a large panel of acyclic 1,3-diols possessing a fluorinated tetrasubstituted stereocenter by condensation of fluorinated ketones with aldehydes under very mild basic conditions. The anti 1,3-diols featuring three contiguous stereogenic centers are generated with excellent diastereocontrol (typically >99 : 1 dr). Depending upon the precursors both diastereomers of stereotriads are accessible through this flexible reaction. Furthermore, from the obtained racemic scaffolds, development of an organocatalyzed kinetic resolution enabled to generate the desired enantioenriched stereotriads with excellent selectivity (typically er >95 : 5).
Collapse
Affiliation(s)
- Na Shao
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Xueyang Liu
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Valérie Monnier
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Marseille, France
| | | | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Cyril Bressy
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Adrien Quintard
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| |
Collapse
|
14
|
Xiao L, Wei L, Wang CJ. Stereodivergent Synthesis of Enantioenriched γ-Butyrolactones Bearing Two Vicinal Stereocenters Enabled by Synergistic Copper and Iridium Catalysis. Angew Chem Int Ed Engl 2021; 60:24930-24940. [PMID: 34633739 DOI: 10.1002/anie.202107418] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/05/2021] [Indexed: 12/29/2022]
Abstract
By virtue of a fundamentally new reaction model of azomethine ylide serving as a two-atom synthon, we present the first example of stereodivergent preparation of γ-butyrolactones via synergistic Cu/Ir-catalyzed asymmetric cascade allylation/lactonization, and all four stereoisomers of γ-butyrolactones bearing two vicinal stereocenters are accessible with excellent diastereoselective and enantioselective control. The chiral IrIII -π-allyl intermediate was separated and characterized to understand the origin of the regio- and stereoselectivity of the initial C-C bond formation process. Control experiments shed some light on the catalyst/substrate and catalyst/catalyst interactions in this dual catalytic system to rationalize the related kinetic/dynamic kinetic resolution process with different catalyst combinations. The enantioenriched γ-butyrolactone products were converted into an array of structurally complex chiral molecules and organocatalysts that were otherwise inaccessible.
Collapse
Affiliation(s)
- Lu Xiao
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Liang Wei
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, 430072, China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
15
|
Doyle MGJ, Gabbey AL, McNutt W, Lundgren RJ. Enantioselective Tertiary Electrophile (Hetero)Benzylation: Pd‐Catalyzed Substitution of Isoprene Monoxide with Arylacetates**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Michael G. J. Doyle
- Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Alexis L. Gabbey
- Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Wesley McNutt
- Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Rylan J. Lundgren
- Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
16
|
Xiao L, Wei L, Wang C. Stereodivergent Synthesis of Enantioenriched γ‐Butyrolactones Bearing Two Vicinal Stereocenters Enabled by Synergistic Copper and Iridium Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107418] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lu Xiao
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education, Wuhan University Wuhan 430072 China
| | - Liang Wei
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education, Wuhan University Wuhan 430072 China
| | - Chun‐Jiang Wang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education, Wuhan University Wuhan 430072 China
- State Key Laboratory of Elemento-organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
17
|
Doyle MGJ, Gabbey AL, McNutt W, Lundgren RJ. Enantioselective Tertiary Electrophile (Hetero)Benzylation: Pd-Catalyzed Substitution of Isoprene Monoxide with Arylacetates*. Angew Chem Int Ed Engl 2021; 60:26495-26499. [PMID: 34658132 DOI: 10.1002/anie.202110525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/12/2021] [Indexed: 12/15/2022]
Abstract
The enantioselective generation of quaternary carbon centers remains challenging but is of growing importance for the preparation of functional molecules. Metal catalyzed allylic alkylations of tertiary electrophiles can provide access to these substructures but remain generally incompatible with organometallic benzyl nucleophiles. Here we demonstrate that electron-deficient arylacetates can serve as benzyl nucleophile surrogates to generate enantioenriched acyclic molecules containing a quaternary carbon center via a two-step substitution-decarboxylation process using isoprene monoxide. Products are often obtained in >90 % ee using a commercially available catalyst. An array of electron-withdrawing functional groups on the arylacetate moiety are tolerated. The lactone generated by the initial substitution reaction can be used in further stereoselective transformations to prepare molecules with acyclic vicinal quaternary stereocenters.
Collapse
Affiliation(s)
- Michael G J Doyle
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Alexis L Gabbey
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Wesley McNutt
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
18
|
Butcher TW, Amberg WM, Hartwig JF. Transition-Metal-Catalyzed Monofluoroalkylation: Strategies for the Synthesis of Alkyl Fluorides by C-C Bond Formation. Angew Chem Int Ed Engl 2021; 61:e202112251. [PMID: 34658121 DOI: 10.1002/anie.202112251] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 11/09/2022]
Abstract
Alkyl fluorides modulate the conformation, lipophilicity, metabolic stability, and p K a of compounds containing aliphatic motifs and, therefore, have been valuable for medicinal chemistry. Despite significant research in organofluorine chemistry, the synthesis of alkyl fluorides, especially chiral alkyl fluorides, remains a challenge. Most commonly, alkyl fluorides are prepared by the formation of C-F bonds (fluorination), and numerous strategies for nucleophilic, electrophilic, and radical fluorination have been reported in recent years. Although strategies to access alkyl fluorides by C-C bond formation (monofluoroalkylation) are inherently convergent and complexity-generating, they have studied less than methods based on fluorination. This Review provides an overview of recent developments in the synthesis of chiral (enantioenriched or racemic) secondary and tertiary alkyl fluorides by monofluoroalkylation catalyzed by transition-metal complexes. We expect this contribution will illuminate the potential of monofluoroalkylations to simplify the synthesis of complex alkyl fluorides and suggest further research directions in this growing field.
Collapse
Affiliation(s)
| | - Willi M Amberg
- University of California Berkeley, Chemistry, UNITED STATES
| | - John F Hartwig
- University of California, Department of Chemistry, 718 LATIMER HALL #1460, 94720-1460, Berkeley, UNITED STATES
| |
Collapse
|
19
|
Zhu M, Zhang Q, Zi W. Diastereodivergent Synthesis of β‐Amino Alcohols by Dual‐Metal‐Catalyzed Coupling of Alkoxyallenes with Aldimine Esters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014510] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Minghui Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
20
|
Zhu M, Zhang Q, Zi W. Diastereodivergent Synthesis of β‐Amino Alcohols by Dual‐Metal‐Catalyzed Coupling of Alkoxyallenes with Aldimine Esters. Angew Chem Int Ed Engl 2021; 60:6545-6552. [DOI: 10.1002/anie.202014510] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/22/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Minghui Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
21
|
Puleo TR, Sujansky SJ, Wright SE, Bandar JS. Organic Superbases in Recent Synthetic Methodology Research. Chemistry 2021; 27:4216-4229. [DOI: 10.1002/chem.202003580] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas R. Puleo
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Stephen J. Sujansky
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Shawn E. Wright
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Jeffrey S. Bandar
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| |
Collapse
|
22
|
Chen P, Li Y, Chen ZC, Du W, Chen YC. Pseudo-Stereodivergent Synthesis of Enantioenriched Tetrasubstituted Alkenes by Cascade 1,3-Oxo-Allylation/Cope Rearrangement. Angew Chem Int Ed Engl 2020; 59:7083-7088. [PMID: 32073203 DOI: 10.1002/anie.202000044] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/14/2020] [Indexed: 12/12/2022]
Abstract
The catalytic diastereodivergent construction of stereoisomers having two or more stereogenic centers has been extensively studied. In contrast, the switchable introduction of another stereogenic element, that is, Z/E configuration involving a polysubstituted alkene group, into the optically active stereoisomers, has not been recognized yet. Disclosed here is the pseudo-stereodivergent synthesis of highly enantioenriched tetrasubstituted alkene architectures from isatin-based Morita-Baylis-Hillman carbonates and allylic derivatives, under the cooperative catalysis of a tertiary amine and a chiral iridium complex. The success of the switchable construction of the tetrasubstituted alkene motif relies on the diastereodivergent 1,3-oxo-allylation reaction between N-allylic ylides and chiral π-allyliridium complex intermediates by ligand and substrate control, followed by the stereoselective concerted 3,3-Cope rearrangement process.
Collapse
Affiliation(s)
- Peng Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yue Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.,College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
23
|
Chen P, Li Y, Chen Z, Du W, Chen Y. Pseudo‐Stereodivergent Synthesis of Enantioenriched Tetrasubstituted Alkenes by Cascade 1,3‐Oxo‐Allylation/Cope Rearrangement. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Peng Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Yue Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Zhi‐Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Ying‐Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
- College of Pharmacy Third Military Medical University Chongqing 400038 China
| |
Collapse
|