1
|
Tamaki S, Kusamoto T, Tsurugi H. Decarboxylative Alkylation of Carboxylic Acids with Easily Oxidizable Functional Groups Catalyzed by an Imidazole-Coordinated Fe 3 Cluster under Visible Light Irradiation. Chemistry 2024:e202402705. [PMID: 39226120 DOI: 10.1002/chem.202402705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Decarboxylative alkylation of carboxylic acids with easily oxidizable functional groups such as phenol and indole functionalities was achieved using a catalytic amount of basic iron(III) acetate, Fe(OAc)2(OH), in the presence of benzimidazole under 427 nm LED irradiation. Kinetic analyses of this catalytic reaction revealed that the reaction rate is first-order in alkenes and is linearly correlated with the light intensity; the faster reaction rate for the benzimidazole-ligated species was consistent with the increased absorbance in the visible light region. Wide functional group tolerance for the easily oxidizable groups is ascribed to the weak oxidation ability of the in situ-generated oxo-bridged iron clusters compared with other iron(III) species.
Collapse
Affiliation(s)
- Sota Tamaki
- Osaka University, Department of Chemistry, Graduate School of Engineering Science, Toyonaka, Osaka, Japan
| | - Tetsuro Kusamoto
- Osaka University, Department of Chemistry, Graduate School of Engineering Science, Toyonaka, Osaka, Japan
| | - Hayato Tsurugi
- Osaka University, Suita, Osaka, Department of Applied Chemistry, Graduate School of Engineering, Japan
| |
Collapse
|
2
|
Sang JW, Du P, Xia D, Zhang Y, Wang J, Zhang WD. EnT-Mediated Amino-Sulfonylation of Alkenes with Bifunctional Sulfonamides: Access to β-Amino Sulfone Derivatives. Chemistry 2023; 29:e202301392. [PMID: 37218305 DOI: 10.1002/chem.202301392] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
β-Amino sulfones are commonly found structural motifs in biologically active compounds. Herein, we report a direct photocatalyzed amino-sulfonylation reaction of alkenes for the efficicient production of important compounds by simple hydrolysis without the need for additional oxidants and reductants. In this transformation, the sulfonamides worked as bifunctional reagents, simultaneously generating sulfonyl radicals and N-centered radicals which were added to alkene in a highly atom-economical fashion with high regioselectivity and diastereoselectivity. This approach showed high functional group tolerance and compatibility, facilitating the late-stage modification of some bioactive alkenes and sulfonamide molecules, thereby expanding the biologically relevant chemical space. Scaling up this reaction led to an efficient green synthesis of apremilast, one of the best-selling pharmceuticals, demonstrating the synthetic utility of the applied method. Moreover, mechanistic investigations suggest that an energy transfer (EnT) process was in operation.
Collapse
Affiliation(s)
- Ji-Wei Sang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Peiyu Du
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Dingding Xia
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai, University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
| | - Jinxin Wang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Wei-Dong Zhang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai, University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
| |
Collapse
|
3
|
Okumatsu D, Kawanaka K, Kainuma S, Kiyokawa K, Minakata S. α-Amination of Carbonyl Compounds by Using Hypervalent Iodine-Based Aminating Reagents Containing a Transferable (Diarylmethylene)amino Group. Chemistry 2023; 29:e202203722. [PMID: 36604401 DOI: 10.1002/chem.202203722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Hypervalent iodine-based aminating reagents containing a transferable (diarylmethylene)amino group can be used for the α-amination of simple carbonyl compounds such as esters, amides, and ketones in the presence of a lithium base. The (diarylmethylene)amino groups of the products can be readily modified, thus providing access to primary amines and diarylmethylamines. The developed method features transition-metal-free conditions and a simple one-pot procedure without the need to prepare enolate equivalents separately, thus offering a general and practical approach to the synthesis of a wide variety of α-amino carbonyl compounds. Experimental mechanistic investigations indicate that this amination proceeds through a unique radical coupling of an α-carbonyl radical with an iminyl radical; they are generated through a single-electron transfer between a lithium enolate and the hypervalent iodine reagent.
Collapse
Affiliation(s)
- Daichi Okumatsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Kazuki Kawanaka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Shunpei Kainuma
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Kensuke Kiyokawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Satoshi Minakata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Zheng Y, Wang Z, Ye Z, Tang K, Xie Z, Xiao J, Xiang H, Chen K, Chen X, Yang H. Regioselective Access to Vicinal Diamines by Metal‐Free Photosensitized Amidylimination of Alkenes with Oxime Esters. Angew Chem Int Ed Engl 2022; 61:e202212292. [DOI: 10.1002/anie.202212292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yu Zheng
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Zhu‐Jun Wang
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Zhi‐Peng Ye
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Kai Tang
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Zhen‐Zhen Xie
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Jun‐An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics Nanning Normal University Nanning 530001 Guangxi P. R. China
| | - Hao‐Yue Xiang
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 Henan P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Xiao‐Qing Chen
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China
| |
Collapse
|
5
|
Zheng Y, Wang ZJ, Ye ZP, Tang K, Xie ZZ, Xiao JA, Xiang HY, Chen K, Chen XQ, Yang H. Regioselective Access to Vicinal Diamines by Metal‐Free Photosensitized Amidylimination of Alkenes with Oxime Esters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Zheng
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Zhu-Jun Wang
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Zhi-Peng Ye
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Kai Tang
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Zhen-Zhen Xie
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Jun-An Xiao
- Nanning Normal University Guangxi Key Laboratory of Natural Polymer Chemistry and Physics CHINA
| | - Hao-Yue Xiang
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Kai Chen
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Xiao-Qing Chen
- Central South University School of Chemistry and Chemical Engineering CHINA
| | - Hua Yang
- Central South University School of Chemistry and Chemical Engineering chang sha citylushan south road NO:932 410083 chang sha CHINA
| |
Collapse
|
6
|
Xu M, Cao W, Xu X, Ji S. Visible‐Light‐Promoted Radical Cyclization and N−N Bond Cleavage Relay of N‐Aminopyridinium Ylides for Access to 2,3‐Difunctionalized Indoles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meng‐Meng Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 People's Republic of China
| | - Wen‐Bin Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 People's Republic of China
| | - Xiao‐Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 People's Republic of China
- Innovation Center for Chemical Science Soochow University Suzhou 215123 People's Republic of China
| | - Shun‐Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 People's Republic of China
- Suzhou Baolidi Functional Materials Research Institute Suzhou 215144 People's Republic of China
| |
Collapse
|
7
|
Ramani A, Desai B, Dholakiya BZ, Naveen T. Recent advances in visible-light mediated functionalization of olefins and alkynes using copper catalysts. Chem Commun (Camb) 2022; 58:7850-7873. [DOI: 10.1039/d2cc01611g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past decade, visible-light photoredox catalysis has blossomed as a powerful strategy and offers a discrete activation mode complementary to thermal controlled reactions. Visible-light-mediated photoredox catalysis also offers exciting...
Collapse
|
8
|
Kweon B, Kim C, Kim S, Hong S. Remote C−H Pyridylation of Hydroxamates through Direct Photoexcitation of
O
‐Aryl Oxime Pyridinium Intermediates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Byeongseok Kweon
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Changha Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seonyul Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
9
|
Kweon B, Kim C, Kim S, Hong S. Remote C-H Pyridylation of Hydroxamates through Direct Photoexcitation of O-Aryl Oxime Pyridinium Intermediates. Angew Chem Int Ed Engl 2021; 60:26813-26821. [PMID: 34636478 DOI: 10.1002/anie.202112364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 01/22/2023]
Abstract
Herein, we report an efficient strategy for the remote C-H pyridylation of hydroxamates with excellent ortho-selectivity by designing a new class of photon-absorbing O-aryl oxime pyridinium salts generated in situ from the corresponding pyridines and hydroxamates. When irradiated by visible light, the photoexcitation of oxime pyridinium intermediates generates iminyl radicals via the photolytic N-O bond cleavage, which does not require an external photocatalyst. The efficiency of light absorption and N-O bond cleavage of the oxime pyridinium salts can be modulated through the electronic effect of substitution on the O-aryl ring. The resultant iminyl radicals enable the installation of pyridyl rings at the γ-CN position, which yields synthetically valuable C2-substituted pyridyl derivatives. This novel synthetic approach provides significant advantages in terms of both efficiency and simplicity and exhibits broad functional group tolerance in complex settings under mild and metal-free conditions.
Collapse
Affiliation(s)
- Byeongseok Kweon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Changha Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seonyul Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
10
|
Patel M, Desai B, Sheth A, Dholakiya BZ, Naveen T. Recent Advances in Mono‐ and Difunctionalization of Unactivated Olefins. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Monak Patel
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bhargav Desai
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Aakash Sheth
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bharatkumar Z. Dholakiya
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Togati Naveen
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| |
Collapse
|
11
|
Deng X, Guo J, Zhang X, Wang X, Su W. Activation of Aryl Carboxylic Acids by Diboron Reagents towards Nickel‐Catalyzed Direct Decarbonylative Borylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xi Deng
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiandong Guo
- Hoffmann Institute of Advanced Materials Postdoctoral Innovation Practice Base Shenzhen Polytechnic 7098 Liuxian Boulevard, Nanshan District Shenzhen 518055 P. R. China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou 350002 P. R. China
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials Postdoctoral Innovation Practice Base Shenzhen Polytechnic 7098 Liuxian Boulevard, Nanshan District Shenzhen 518055 P. R. China
- Department of Chemistry University of Colorado Denver Campus Box 194, P. O. Box 173364 Denver CO 80217-3364 USA
| | - Weiping Su
- State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Yangqiao West Road 155 Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
12
|
Photocatalytic
Anti
‐Markovnikov Radical Hydro‐ and Aminooxygenation of Unactivated Alkenes Tuned by Ketoxime Carbonates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Lai SQ, Wei BY, Wang JW, Yu W, Han B. Photocatalytic Anti-Markovnikov Radical Hydro- and Aminooxygenation of Unactivated Alkenes Tuned by Ketoxime Carbonates. Angew Chem Int Ed Engl 2021; 60:21997-22003. [PMID: 34255913 DOI: 10.1002/anie.202107118] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/29/2021] [Indexed: 11/05/2022]
Abstract
A tunable photocatalytic method is reported for anti-Markovnikov hydro- and aminooxygenation of unactivated alkenes using readily accessible ketoxime carbonates as the diverse functionalization reagents. Mechanistic studies reveal that this reaction is initiated through an energy-transfer-promoted N-O bond homolysis of ketoxime carbonates leading to alkoxylcarbonyloxyl and iminyl radicals under visible-light photocatalysis, followed by the addition of alkoxylcarbonyloxyl radical to alkenes. By taking advantage of the different stability of the iminyl radicals, the generated carbon radical either abstracts a hydrogen atom from the media to form the anti-Markovnikov hydrooxygenation product, or it is trapped by the persistent iminyl radical to furnish the aminooxygenation product. Notably, this is the first example of direct hydrooxygenation of unactivated olefins with anti-Markovnikov regioselectivity involving an oxygen-centered radical.
Collapse
Affiliation(s)
- Sheng-Qiang Lai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bang-Yi Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jia-Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
14
|
Deng X, Guo J, Zhang X, Wang X, Su W. Activation of Aryl Carboxylic Acids by Diboron Reagents towards Nickel-Catalyzed Direct Decarbonylative Borylation. Angew Chem Int Ed Engl 2021; 60:24510-24518. [PMID: 34235828 DOI: 10.1002/anie.202106356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/05/2021] [Indexed: 12/14/2022]
Abstract
The Ni-catalyzed decarbonylative borylation of (hetero)aryl carboxylic acids with B2 cat2 has been achieved without recourse to any additives. This Ni-catalyzed method exhibits a broad substrate scope covering poorly reactive non-ortho-substituted (hetero)aryl carboxylic acids, and tolerates diverse functional groups including some of the groups active to Ni0 catalysts. The key to achieve this decarbonylative borylation reaction is the choice of B2 cat2 as a coupling partner that not only acts as a borylating reagent, but also chemoselectively activates aryl carboxylic acids towards oxidative addition of their C(acyl)-O bond to Ni0 catalyst via the formation of acyloxyboron compounds. A combination of experimental and computational studies reveals a detailed plausible mechanism for this reaction system, which involves a hitherto unknown concerted decarbonylation and reductive elimination step that generates the aryl boronic ester product. This mode of boron-promoted carboxylic acid activation is also applicable to other types of reactions.
Collapse
Affiliation(s)
- Xi Deng
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiandong Guo
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen, 518055, P. R. China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, 350002, P. R. China
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen, 518055, P. R. China.,Department of Chemistry, University of Colorado Denver, Campus Box 194, P. O. Box 173364, Denver, CO, 80217-3364, USA
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Krylov IB, Segida OO, Budnikov AS, Terent'ev AO. Oxime‐Derived Iminyl Radicals in Selective Processes of Hydrogen Atom Transfer and Addition to Carbon‐Carbon π‐Bonds. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100058] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Igor B. Krylov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Oleg O. Segida
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexander S. Budnikov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospekt 47 119991 Moscow Russian Federation
| |
Collapse
|
16
|
Shin S, Lee S, Choi W, Kim N, Hong S. Visible‐Light‐Induced 1,3‐Aminopyridylation of [1.1.1]Propellane with
N
‐Aminopyridinium Salts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sanghoon Shin
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seojin Lee
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Wonjun Choi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Namhoon Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
17
|
Shin S, Lee S, Choi W, Kim N, Hong S. Visible-Light-Induced 1,3-Aminopyridylation of [1.1.1]Propellane with N-Aminopyridinium Salts. Angew Chem Int Ed Engl 2021; 60:7873-7879. [PMID: 33403785 DOI: 10.1002/anie.202016156] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 01/16/2023]
Abstract
Through the formation of an electron donor-acceptor (EDA) complex, strain-release aminopyridylation of [1.1.1]propellane with N-aminopyridinium salts as bifunctional reagents enabled the direct installation of amino and pyridyl groups onto bicyclo[1.1.1]pentane (BCP) frameworks in the absence of an external photocatalyst. The robustness of this method to synthesize 1,3-aminopyridylated BCPs under mild and metal-free conditions is highlighted by the late-stage modification of structurally complex biorelevant molecules. Moreover, the strategy was extended to P-centered and CF3 radicals for the unprecedented incorporation of such functional groups with pyridine across the BCP core in a three-component coupling. This practical method lays the foundation for the straightforward construction of new valuable C4-pyridine-functionalized BCP chemical entities, thus significantly expanding the range of accessibility of BCP-type bioisosteres for applications in drug discovery.
Collapse
Affiliation(s)
- Sanghoon Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seojin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Wonjun Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Namhoon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
18
|
Im H, Choi W, Hong S. Photocatalytic Vicinal Aminopyridylation of Methyl Ketones by a Double Umpolung Strategy. Angew Chem Int Ed Engl 2020; 59:17511-17516. [DOI: 10.1002/anie.202008435] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Honggu Im
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Wonjun Choi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
19
|
Im H, Choi W, Hong S. Photocatalytic Vicinal Aminopyridylation of Methyl Ketones by a Double Umpolung Strategy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Honggu Im
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Wonjun Choi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
20
|
Niu P, Li J, Zhang Y, Huo C. One‐Electron Reduction of Redox‐Active Esters to Generate Carbon‐Centered Radicals. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000525] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Pengfei Niu
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| | - Jun Li
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| | - Yongxin Zhang
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| | - Congde Huo
- College of Chemistry and Chemical Engineering Northwest Normal University 730070 Lanzhou Gansu China
| |
Collapse
|
21
|
Willstätter‐Vorlesung: D. Gelman / Otto‐Roelen‐Medaille: F. Glorius / European Chemistry Gold Medal: M. Parrinello. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Willstaetter Lecture: D. Gelman / Roelen Award: F. Glorius / European Chemistry Gold Medal: M. Parrinello. Angew Chem Int Ed Engl 2020; 59:6651. [DOI: 10.1002/anie.202003373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|