1
|
Hydroperoxyl-mediated C-H bond activation on Cr single atom catalyst: An alternative to the Fenton mechanism. J Catal 2023. [DOI: 10.1016/j.jcat.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Fang G, Hu J, Tian L, Liang J, Lin J, Li L, Zhu C, Wang X. Zirconium‐oxo Nodes of MOFs with Tunable Electronic Properties Provide Effective ⋅OH Species for Enhanced Methane Hydroxylation. Angew Chem Int Ed Engl 2022; 61:e202205077. [DOI: 10.1002/anie.202205077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Geqian Fang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Jin‐Nian Hu
- School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 China
| | - Ling‐Chan Tian
- School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 China
| | - Jin‐Xia Liang
- School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Chun Zhu
- School of Chemistry and Chemical Engineering Guizhou University Guiyang 550025 China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
3
|
Fang G, Hu J, Tian L, Liang J, Lin J, Li L, Zhu C, Wang X. Zr‐oxo Nodes of MOFs with Tunable Electronic Properties Provide Effective •OH Species for Enhanced Methane Hydroxylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Geqian Fang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Jinnian Hu
- Guizhou University School of Chemistry and Chemical Engineering CHINA
| | - Lingchan Tian
- Guizhou University School of Chemistry and Chemical Engineering CHINA
| | - Jinxia Liang
- Guizhou University School of Chemistry and Chemical Engineering CHINA
| | - Jian Lin
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Lin Li
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Chun Zhu
- Guizhou University School of Chemistry and Chemical Engineering CHINA
| | - Xiaodong Wang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Zhongshan Road 457, Dalian, China 116023 Dalian CHINA
| |
Collapse
|
4
|
Kumar P, Al-Attas TA, Hu J, Kibria MG. Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. ACS NANO 2022; 16:8557-8618. [PMID: 35638813 DOI: 10.1021/acsnano.2c02464] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Direct conversion of methane (CH4) to C1-2 liquid oxygenates is a captivating approach to lock carbons in transportable value-added chemicals, while reducing global warming. Existing approaches utilizing the transformation of CH4 to liquid fuel via tandemized steam methane reforming and the Fischer-Tropsch synthesis are energy and capital intensive. Chemocatalytic partial oxidation of methane remains challenging due to the negligible electron affinity, poor C-H bond polarizability, and high activation energy barrier. Transition-metal and stoichiometric catalysts utilizing harsh oxidants and reaction conditions perform poorly with randomized product distribution. Paradoxically, the catalysts which are active enough to break C-H also promote overoxidation, resulting in CO2 generation and reduced carbon balance. Developing catalysts which can break C-H bonds of methane to selectively make useful chemicals at mild conditions is vital to commercialization. Single atom catalysts (SACs) with specifically coordinated metal centers on active support have displayed intrigued reactivity and selectivity for methane oxidation. SACs can significantly reduce the activation energy due to induced electrostatic polarization of the C-H bond to facilitate the accelerated reaction rate at the low reaction temperature. The distinct metal-support interaction can stabilize the intermediate and prevent the overoxidation of the reaction products. The present review accounts for recent progress in the field of SACs for the selective oxidation of CH4 to C1-2 oxygenates. The chemical nature of catalytic sites, effects of metal-support interaction, and stabilization of intermediate species on catalysts to minimize overoxidation are thoroughly discussed with a forward-looking perspective to improve the catalytic performance.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Tareq A Al-Attas
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
5
|
Li Z, Hu R, Ye S, Song J, Liu L, Qu J, Song W, Cao C. High-Performance Heterogeneous Thermocatalysis Caused by Catalyst Wettability Regulation. Chemistry 2022; 28:e202104588. [PMID: 35253287 DOI: 10.1002/chem.202104588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 01/11/2023]
Abstract
Catalyst wettability regulation has emerged as an attractive approach for high catalytic performance for the past few years. By introducing appropriate wettability, the molecule diffusion of reactants and products can be enhanced, leading to high activity. Besides this, undesired molecules are isolated for high selectivity of target products and long-term stability of catalyst. Herein, we summarize wettability-induced high-performance heterogeneous thermocatalysis in recent years, including hydrophilicity, hydrophobicity, hybrid hydrophilicity-hydrophobicity, amphiphilicity, and superaerophilicity. Relevant reactions are further classified and described according to the reason for the performance improvement. It should be pointed out that studies of utilizing superaerophilicity to improve heterogeneous thermocatalytic performance have been included for the first time, so this is a comparatively comprehensive review in this field as yet.
Collapse
Affiliation(s)
- Zhaohua Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.,Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shuai Ye
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russian Federation
| | - Weiguo Song
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Changyan Cao
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
6
|
Martín N, Cirujano FG. Supported Single Atom Catalysts for C−H Activation: Selective C−H Oxidations, Dehydrogenations and Oxidative C−H/C−H Couplings. ChemCatChem 2021. [DOI: 10.1002/cctc.202100345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nuria Martín
- Instituto de Ciencia Molecular (ICMol) Universitat de Valencia Catedrático José Beltrán Martínez n° 2 46980 Paterna Valencia Spain
| | - Francisco G. Cirujano
- Instituto de Ciencia Molecular (ICMol) Universitat de Valencia Catedrático José Beltrán Martínez n° 2 46980 Paterna Valencia Spain
| |
Collapse
|
7
|
Shakeri J, Joshaghani M, Hadadzadeh H, Shaterzadeh MJ. Methane carbonylation to light olefins and alcohols over carbon–based iron– and cobalt–oxide catalysts. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Xing Y, Yao Z, Li W, Wu W, Lu X, Tian J, Li Z, Hu H, Wu M. Fe/Fe
3
C Boosts H
2
O
2
Utilization for Methane Conversion Overwhelming O
2
Generation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016888] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yicheng Xing
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Zheng Yao
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Wenyuan Li
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Wenting Wu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Xiaoqing Lu
- College of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Jun Tian
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science Fudan University Shanghai 200433 P. R. China
| | - Zhongtao Li
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Han Hu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| |
Collapse
|
9
|
Xing Y, Yao Z, Li W, Wu W, Lu X, Tian J, Li Z, Hu H, Wu M. Fe/Fe
3
C Boosts H
2
O
2
Utilization for Methane Conversion Overwhelming O
2
Generation. Angew Chem Int Ed Engl 2021; 60:8889-8895. [DOI: 10.1002/anie.202016888] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Yicheng Xing
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Zheng Yao
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Wenyuan Li
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Wenting Wu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Xiaoqing Lu
- College of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Jun Tian
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science Fudan University Shanghai 200433 P. R. China
| | - Zhongtao Li
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Han Hu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| |
Collapse
|
10
|
Zhao W, Shi Y, Jiang Y, Zhang X, Long C, An P, Zhu Y, Shao S, Yan Z, Li G, Tang Z. Fe‐O Clusters Anchored on Nodes of Metal–Organic Frameworks for Direct Methane Oxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wenshi Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yanan Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Yuheng Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Xiaofei Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Chang Long
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yanfei Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Shengxian Shao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhuang Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
11
|
Zhao W, Shi Y, Jiang Y, Zhang X, Long C, An P, Zhu Y, Shao S, Yan Z, Li G, Tang Z. Fe-O Clusters Anchored on Nodes of Metal-Organic Frameworks for Direct Methane Oxidation. Angew Chem Int Ed Engl 2021; 60:5811-5815. [PMID: 33169485 DOI: 10.1002/anie.202013807] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Direct methane oxidation into value-added organic oxygenates with high productivity under mild condition remains a great challenge. We show Fe-O clusters on nodes of metal-organic frameworks (MOFs) with tunable electronic state for direct methane oxidation into C1 organic oxygenates at 50 °C. The Fe-O clusters are grafted onto inorganic Zr6 nodes of UiO-66, while the organic terephthalic acid (H2 BDC) ligands of UiO-66 are partially substituted with monocarboxylic modulators of acetic acid (AA) or trifluoroacetic acid (TFA). Experiments and theoretical calculation disclose that the TFA group coordinated with Zr6 node of UiO-66 enhances the oxidation state of adjacent Fe-O cluster due to its electron-withdrawing ability, promotes the activation of C-H bond of methane, and increases its selective conversion, thus leading to the extraordinarily high C1 oxygenate yield of 4799 μmol gcat -1 h-1 with 97.9 % selectivity, circa 8 times higher than those modulated with AA.
Collapse
Affiliation(s)
- Wenshi Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanan Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yuheng Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xiaofei Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Chang Long
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanfei Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Shengxian Shao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhuang Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Chen J, Wang S, Peres L, Collière V, Philippot K, Lecante P, Chen Y, Yan N. Oxidation of methane to methanol over Pd@Pt nanoparticles under mild conditions in water. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00273b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pd@Pt core–shell colloidal nanoparticles efficiently catalyse the direct oxidation of methane to methanol with high selectivity using H2O2 in water.
Collapse
Affiliation(s)
- Jianjun Chen
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
- Institute of New Energy and Low-carbon Technology
| | - Sikai Wang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
- Joint School of National University of Singapore and Tianjin University
| | - Laurent Peres
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- F-31077 Toulouse Cedex 4
- France
| | - Vincent Collière
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- F-31077 Toulouse Cedex 4
- France
| | - Karine Philippot
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- F-31077 Toulouse Cedex 4
- France
| | - Pierre Lecante
- CNRS
- CEMES (Centre d'Élaboration des Matériaux et d'Études Structurales)
- F-31055 Toulouse Cedex 4
- France
| | - Yaoqiang Chen
- Institute of New Energy and Low-carbon Technology
- Sichuan University
- Chengdu 610064
- China
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
| |
Collapse
|
13
|
Vargheese V, Kobayashi Y, Oyama ST. The Direct Partial Oxidation of Methane to Dimethyl Ether over Pt/Y
2
O
3
Catalysts Using an NO/O
2
Shuttle. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Vibin Vargheese
- Department of Chemical System Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Yasukazu Kobayashi
- Interdisciplinary Research Center for Catalytic Chemistry National Institute of Advanced Industrial Science and Technology (AIST) Central 5, Higashi 1-1-1 Tsukuba Ibaraki 305-8565 Japan
| | - S. Ted Oyama
- School of Chemical Engineering Fuzhou University Fuzhou 350116 China
- Department of Chemical Engineering Virginia Tech Blacksburg VA 24061 USA
- Department of Chemical System Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
14
|
Vargheese V, Kobayashi Y, Oyama ST. The Direct Partial Oxidation of Methane to Dimethyl Ether over Pt/Y 2 O 3 Catalysts Using an NO/O 2 Shuttle. Angew Chem Int Ed Engl 2020; 59:16644-16650. [PMID: 32542891 DOI: 10.1002/anie.202006020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Indexed: 11/07/2022]
Abstract
Using a mixture of NO + O2 as the oxidant enabled the direct selective oxidation of methane to dimethyl ether (DME) over Pt/Y2 O3 . The reaction was carried out in a fixed bed reactor at 0.1 MPa over a temperature range of 275-375 °C. During the activity tests, the only carbon-containing products were DME and CO2 . The DME productivity (μmol gcat -1 h-1 ) was comparable to oxygenate productivities reported in the literature for strong oxidants (N2 O, H2 O2 , O3 ). The NO + O2 mixture formed NO2 , which acted as the oxygen atom carrier for the ultimate oxidant O2 . During the methane partial oxidation reaction, NO and NO2 were not reduced to N2 . In situ FTIR showed the formation of surface nitrate species, which are considered to be key intermediate species for the selective oxidation.
Collapse
Affiliation(s)
- Vibin Vargheese
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yasukazu Kobayashi
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - S Ted Oyama
- School of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|