1
|
Li X, Huang C, Fan Y, Bai Z, An BL, Xu J, Zheng W, Bai YL. Boosting Solid-State Luminescence of Thiazolothiazole Viologen by Incorporating Metal Halide Clusters to Hinder π-Stacking. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46022-46030. [PMID: 37729492 DOI: 10.1021/acsami.3c09484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
A new strategy is developed herein to improve the solid fluorescence of thiazolothiazole viologen by using the ZnCl42- cluster as a scaffold to hinder π-stacking. Importantly, the Cl···H bonds are formed in the solid state to sustain the framework and can be automatically dissociated when dissolved in H2O, thus having no impact on the strong emission in aqueous solution. As such, the first case of organic-inorganic viologen-zinc halide named 4PV·ZnCl4 was designed and synthesized, and a significant increase in photoluminescence quantum yield (ΦF) is realized from 4PV·2Br (ΦF = 0%) to 4PV·ZnCl4 (ΦF = 27.0%) in solid and from 97% to 98% in H2O. 4PV·ZnCl4 also displays pH stimuli-responsive naked-eye chromic behavior and photoluminescence with different coloring states and intensities. The multifunctional performance of 4PV·ZnCl4 provides a prerequisite for carrying different information, expanding their promising application in multilevel information encryption.
Collapse
Affiliation(s)
- Xuyi Li
- NEST LAB, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Rd, Shanghai 200444, China
| | - Chen Huang
- NEST LAB, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Rd, Shanghai 200444, China
| | - Yu Fan
- NEST LAB, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Rd, Shanghai 200444, China
| | - Zhiang Bai
- NEST LAB, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Rd, Shanghai 200444, China
| | - Bao-Li An
- NEST LAB, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Rd, Shanghai 200444, China
| | - Jiaqiang Xu
- NEST LAB, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Rd, Shanghai 200444, China
| | - Weiwei Zheng
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Yue-Ling Bai
- NEST LAB, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Rd, Shanghai 200444, China
| |
Collapse
|
2
|
Li P, Jia Y, Chen P. Design and Synthesis of New Type of Macrocyclic Architectures Used for Optoelectronic Materials and Supramolecular Chemistry. Chemistry 2023; 29:e202300300. [PMID: 37439485 DOI: 10.1002/chem.202300300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
Supramolecular chemistry has received much attention for decades. Macrocyclic architectures as representative receptors play a vital role in supramolecular chemistry and are applied in many fields such as supramolecular assembly and host-guest recognition. However, the classical macrocycles generally lack functional groups in the scaffolds, which limit their further applications, especially in optoelectronic materials. Therefore, developing a new design principle is not only essential to better understand macrocyclic chemistry and the supramolecular behaviors, but also further expand their applications in many research fields. In recent years, the doping compounds with main-group heteroatoms (B, N, S, O, P) into the carbon-based π-conjugated macrocycles offered a new strategy to build macrocyclic architectures with unique optoelectronic properties. In particular, the energy gaps and redox behavior can be effectively tuned by incorporating heteroatoms into the macrocyclic scaffolds. In this Minireview, we briefly summarize the design and synthesis of new macrocycles, and further discuss the related applications in optoelectronic materials and supramolecular chemistry.
Collapse
Affiliation(s)
- Pengfei Li
- School of Chemistry and Material Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan Province, P. R. China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
3
|
Chen Z, Qin H, Yin Y, Deng DD, Qin SY, Li N, Wang K, Sun Y. Full-Color Emissive D-D-A Carbazole Luminophores: Red-to-NIR Mechano-fluorochromism, Aggregation-Induced Near-Infrared Emission, and Application in Photodynamic Therapy. Chemistry 2023; 29:e202203797. [PMID: 36545826 DOI: 10.1002/chem.202203797] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The preparation of multifunctionalized luminophores with full-color emission based on an identical core skeleton is a significative but challenging research topic. In this work, eight donor-donor-acceptor (D-D-A)-type luminogens based on a central carbazole core bearing a C6 hydrocarbon chain were designed by using different kinds of donor and acceptor units on the left and right, and synthesized in good yields. These D-D-A carbazole derivatives display deep-blue, sky-blue, cyan, green, yellow-green, yellow, orange and red fluorescence in the solid state, achieving full-color emission covering the whole visible light range under UV light illumination. Notably, the dicyano-functionalized triphenylamine-containing carbazole derivative exhibits rare aggregation-induced near-infrared emission and red-to-near-infrared mechano-fluorochromism with high contrast beyond 100 nm. Furthermore, the red-emissive luminogen can serve as a potential candidate for cell imaging and photodynamic therapy (PDT). This work not only provides reference for the construction of full-color emissive systems but also opens a new avenue to the preparation of multifunctionalized luminophores capable of simultaneous application in near-Infrared mechanical-force sensors and PDT fields.
Collapse
Affiliation(s)
- Zhao Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Huan Qin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Ya Yin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Dian-Dian Deng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Si-Yong Qin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Nan Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China.,Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| |
Collapse
|
4
|
Oda K, Nishiyama H, Nishida JI, Kawase T. 9,9-Bis[4-(N-aryl)phenyl]methylidene-xanthylidene Derivatives Displaying Mechano-, Crystallo-, and Thermochromism. Chempluschem 2023; 88:e202200360. [PMID: 36515279 DOI: 10.1002/cplu.202200360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Indexed: 11/30/2022]
Abstract
Tetraphenylethylene (TPE) derivatives bearing a xanthene moiety are of interest because they have novel optical properties. 9,9-Bis[4-(N,N-diphenylamino)phenyl] and 9,9-bis[4-(9-carbazolyl)-phenyl]methylidene-xanthylidenes 3 and 4 were synthesized using Suzuki-Miyaura coupling of 9,9-dibromomethylidene-xanthylidene with the corresponding boronic acids. Diphenylamino derivative 3 exhibits mechanochromism and mechanofluorochromism (MC and MFC) reflected in absorption and fluorescence color changes. In contrast, carbazolyl derivative 4 displays thermo- and crystallo-chromism in addition to MC and MFC in the solid state. Powder X-ray diffraction and single crystal X-ray crystallographic analysis reveal that the solid state photophysical properties of these substances are governed by conformational changes rather by the creation of planar π-conjugation extended geometries.
Collapse
Affiliation(s)
- Kasane Oda
- Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Hiroki Nishiyama
- Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Jun-Ichi Nishida
- Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Takeshi Kawase
- Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| |
Collapse
|
5
|
Liang K, Chen H, Wang X, Lu T, Duan Z, Sessler JL, Lei C. Di-2,7-pyrenidecaphyrin(1.1.0.0.0.1.1.0.0.0) and Its Bis-Organopalladium Complexes: Synthesis and Chiroptical Properties. Angew Chem Int Ed Engl 2023; 62:e202212770. [PMID: 36401592 DOI: 10.1002/anie.202212770] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
A non-aromatic expanded carbaporphyrinoid, incorporating two built-in 2,7-pyrenylene moieties was synthesized. The intrinsically labile structure was demonstrated by proton-triggered conformational changes between the figure-of-eight and quasi-Möbius conformers. Upon treatment with Pd(OAc)2 , the reaction produces two bis-PdII complexes with distinct coordination modes. Metal coordination serves to fix the macrocyclic frameworks with the net result that both bis-PdII complexes could be resolved by high performance liquid chromatography (HPLC) on a chiral stationary phase. The isolated enantiomers showed persistent chiroptical properties as evidenced by the intense response in the circular dichroism (CD) spectra and the record high absorption dissymmetry factors (gabs of up to 0.038) seen in the near-infrared spectral region. Moreover, the mutual interconversion of these two PdII complexes was found to be stereospecific and to favor the more stable isomers under weakly acidic conditions.
Collapse
Affiliation(s)
- Kejiang Liang
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| | - Hao Chen
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| | - Xue Wang
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| | - Tian Lu
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhiming Duan
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, TX 78712-1224, USA
| | - Chuanhu Lei
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
6
|
Wang Y, Yao H, Yang L, Quan M, Jiang W. Synthesis, Configurational Analysis, Molecular Recognition and Chirality Sensing of Methylene‐Bridged Naphthotubes. Angew Chem Int Ed Engl 2022; 61:e202211853. [DOI: 10.1002/anie.202211853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yan‐Fang Wang
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Huan Yao
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Liu‐Pan Yang
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Mao Quan
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Wei Jiang
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| |
Collapse
|
7
|
Wang YF, Yao H, Yang LP, Quan M, Jiang W. Synthesis, Configurational Analysis, Molecular Recognition and Chirality Sensing of Methylene‐Bridged Naphthotubes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan Fang Wang
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Huan Yao
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Liu-Pan Yang
- Southern University of Science and Technology Department of Chemistry Xueyuan Blvd 1088Nanshan District 518055 Shenzhen CHINA
| | - Mao Quan
- Southern University of Science and Technology Department of Chemistry Xueyuan Blvd 1088Nanshan District 518055 Shenzhen CHINA
| | - Wei Jiang
- Southern University of Science and Technology Department of Chemistry Xueyuan Blvd 1088, Nanshan District 518055 Shenzhen CHINA
| |
Collapse
|
8
|
Moutier F, Schiller J, Lecourt C, Khalil AM, Delmas V, Calvez G, Costuas K, Lescop C. Impact of Intermolecular Non‐Covalent Interactions in a Cu
I
8
Pd
II
1
Discrete Assembly: Conformers’ Geometries and Stimuli‐Sensitive Luminescence Properties. Chemistry 2022; 28:e202104497. [DOI: 10.1002/chem.202104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Florent Moutier
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Jana Schiller
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Constance Lecourt
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | | | - Vincent Delmas
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Guillaume Calvez
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Karine Costuas
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Christophe Lescop
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| |
Collapse
|
9
|
Wang L, Nagashima Y, Abekura M, Uekusa H, Konishi G, Tanaka K. Rhodium‐Catalyzed Intermolecular Cycloaromatization Route to Cycloparaphenylenes that Exhibit Aggregation‐Induced Emission. Chemistry 2022; 28:e202200064. [DOI: 10.1002/chem.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Li‐Hsiang Wang
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Masato Abekura
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hidehiro Uekusa
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Gen‐ichi Konishi
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
10
|
Zhou HY, Zhang DW, Li M, Chen CF. A Calix[3]acridan-Based Host-Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2022; 61:e202117872. [PMID: 35146858 DOI: 10.1002/anie.202117872] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 02/06/2023]
Abstract
A supramolecular strategy to construct thermally activated delayed fluorescence (TADF) materials through host-guest charge transfer interactions was proposed. Consequently, a new class of macrocycle namely calix[3]acridan was conveniently synthesized in 90 % yield. The host-guest cocrystal formed by calix[3]acridan and 1,2-dicyanobenzene exhibited efficient TADF properties due to intense intermolecular charge transfer interactions. Moreover, the spatially separated highest occupied molecular orbital and lowest unoccupied molecular orbital resulted in a very small singlet-triplet energy gap of 0.014 eV and hence guaranteed an efficient reverse intersystem crossing for TADF. Especially, a high photoluminescence quantum yield of 70 % was achieved, and it represents the highest value among the reported intermolecular donor-acceptor TADF materials.
Collapse
Affiliation(s)
- He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da-Wei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Katayama K, Matsuura Y, Kitamura C, Nishida JI, Kawase T. 2‐Aryl‐1H‐benz[de]isoquinolinium ions: Cationic Dyes Displaying Mechanochromism and Crystallochromism. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Koji Katayama
- University of Hyogo: Hyogo Kenritsu Daigaku Graduate School of Engineering 2167Shosha 671-2280 Himeji JAPAN
| | - Yuuka Matsuura
- University of Hyogo: Hyogo Kenritsu Daigaku Graduate School of Engineering 2167Shosha 671-2280 Himeji JAPAN
| | - Chitoshi Kitamura
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku School of Engineering 2500Hassaka-cho 522-8533 Hikone JAPAN
| | - Jun-ichi Nishida
- University of Hyogo: Hyogo Kenritsu Daigaku Graduate School of Engineering 2167Shosha 671-2280 Himeji JAPAN
| | - Takeshi Kawase
- Hyogo University Materials Science and Chemistry Shosha 2167 671-2201 Himeji JAPAN
| |
Collapse
|
12
|
Zhou HY, Zhang DW, Li M, Chen CF. A Calix[3]acridan‐Based Host−Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- He-Ye Zhou
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Da-Wei Zhang
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Meng Li
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function CHINA
| | - Chuan-Feng Chen
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Recognition and Function Zhongguancun North First Street 2 100190 Beijing CHINA
| |
Collapse
|
13
|
Li J, Zhou H, Han Y, Chen C. Saucer[
n
]arenes: Synthesis, Structure, Complexation, and Guest‐Induced Circularly Polarized Luminescence Property. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108209] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jing Li
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - He‐Ye Zhou
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chuan‐Feng Chen
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
14
|
Li J, Zhou HY, Han Y, Chen CF. Saucer[n]arenes: Synthesis, Structure, Complexation, and Guest-Induced Circularly Polarized Luminescence Property. Angew Chem Int Ed Engl 2021; 60:21927-21933. [PMID: 34378287 DOI: 10.1002/anie.202108209] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Indexed: 11/08/2022]
Abstract
Macrocycles denoted as saucer[n]arenes (n=4,5) were easily synthesized by the one-pot condensation of 2,7-dimethoxynaphthalene (2,7-DMN) and paraformaldehyde in the presence of TFA or catalytic BF3 ⋅OEt2 . With 1,1-dimethylpiperidin-1-ium as the template, saucer[4]arene was selectively obtained. Crystal structures show that saucer[n]arenes are all composed of 2,7-DMN moiety bridged by the methylene groups at 1,6-positions: all of the 7-methoxy groups lie on one face, and all of the 2-methoxy groups lie on the other. Saucer[n]arenes exhibit strong fluorescence properties with the quantum yields of 19.6 % and 23.4 %. They form 1:1 complexes with ammonium salts in both solution and solid state (association constant up to 105 M-1 in CDCl3 ). Chiral quaternary ammonium salts can induce the chirality of the dynamically racemic inherently chiral saucer[n]arenes in solution, and thus show mirror-imaged circular dichroism signals and circularly polarized luminescence (CPL) properties.
Collapse
Affiliation(s)
- Jing Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Zhang X, Shi H, Zhuang G, Wang S, Wang J, Yang S, Shao X, Du P. A Highly Strained All‐Phenylene Conjoined Bismacrocycle. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinyu Zhang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Hong Shi
- Department of Chemical Physics CAS Key Laboratory of Urban Pollutant Conversion Synergetic Innovation Center of Quantum Information and Quantum Physics University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Guilin Zhuang
- College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang Province 310032 China
| | - Shengda Wang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Jinyi Wang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Xiang Shao
- Department of Chemical Physics CAS Key Laboratory of Urban Pollutant Conversion Synergetic Innovation Center of Quantum Information and Quantum Physics University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Pingwu Du
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 China
| |
Collapse
|
16
|
Zhang X, Shi H, Zhuang G, Wang S, Wang J, Yang S, Shao X, Du P. A Highly Strained All-Phenylene Conjoined Bismacrocycle. Angew Chem Int Ed Engl 2021; 60:17368-17372. [PMID: 33945657 DOI: 10.1002/anie.202104669] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Indexed: 11/10/2022]
Abstract
Herein, we report the precise synthesis of a 3D highly strained all-phenylene bismacrocycle, termed conjoined (1,4)[10]cycloparaphenylenophane (SCPP[10]). This structure consists of a twisted benzene ring which is bridged twice by phenylene units anchored in two para-positions. The conjoined structure of SCPP[10] was confirmed in real space at the atomic scale by scanning tunneling microscopy. Theoretical calculations indicate that this bismacrocycle has a very high strain energy of 110.59 kcal mol-1 and the largest interphenylene torsion angle of 46.07° caused by multiple repulsive interactions. Furthermore, a 1:2 host-guest complex of SCPP[10] and [6,6]-phenyl-C61 -butyric acid methyl ester was investigated, which represents the first peanut-shaped 1:2 host-guest complex based on bismacrocycles.
Collapse
Affiliation(s)
- Xinyu Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Hong Shi
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Guilin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang Province, 310032, China
| | - Shengda Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Jinyi Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Xiang Shao
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Pingwu Du
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| |
Collapse
|
17
|
Zhai C, Schreiber CL, Padilla-Coley S, Oliver AG, Smith BD. Fluorescent Self-Threaded Peptide Probes for Biological Imaging. Angew Chem Int Ed Engl 2020; 59:23740-23747. [PMID: 32930474 PMCID: PMC7736561 DOI: 10.1002/anie.202009599] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/08/2020] [Indexed: 12/19/2022]
Abstract
A general synthetic method creates a new class of covalently connected, self-threaded, fluorescent molecular probes with figure-eight topology, an encapsulated deep-red fluorophore, and two peripheral peptide loops. The globular molecular shape and rigidified peptide loops enhance imaging performance by promoting water solubility, eliminating probe self-aggregation, and increasing probe stability. Moreover, the peptide loops determine the affinity and selectivity for targets within complex biological samples such as cell culture, tissue histology slices, or living subjects. For example, a probe with cell-penetrating peptide loops targets the surface of cell plasma membranes, whereas, a probe with bone-targeting peptide loops selectively stains the skeleton within a living mouse. The unique combination of bright deep-red fluorescence, high stability, and predictable peptide-based targeting is ideal for photon intense fluorescence microscopy and biological imaging.
Collapse
Affiliation(s)
- Canjia Zhai
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cynthia L. Schreiber
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sasha Padilla-Coley
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
18
|
Zhai C, Schreiber CL, Padilla‐Coley S, Oliver AG, Smith BD. Fluorescent Self‐Threaded Peptide Probes for Biological Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Canjia Zhai
- Department of Chemistry and Biochemistry University of Notre Dame 251 Nieuwland Science Hall Notre Dame IN 46556 USA
| | - Cynthia L. Schreiber
- Department of Chemistry and Biochemistry University of Notre Dame 251 Nieuwland Science Hall Notre Dame IN 46556 USA
| | - Sasha Padilla‐Coley
- Department of Chemistry and Biochemistry University of Notre Dame 251 Nieuwland Science Hall Notre Dame IN 46556 USA
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry University of Notre Dame 251 Nieuwland Science Hall Notre Dame IN 46556 USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry University of Notre Dame 251 Nieuwland Science Hall Notre Dame IN 46556 USA
| |
Collapse
|
19
|
Zhang G, Moosa B, Chen A, Khashab NM. Separation and Detection of
meta
‐ and
ortho
‐Substituted Benzene Isomers by Using a Water‐Soluble Pillar[5]arene. Chempluschem 2020; 85:1244-1248. [DOI: 10.1002/cplu.202000275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Gengwu Zhang
- Smart Hybrid Materials Laboratory (SHMs) Advanced Membranes and Porous Materials Center (AMPMC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials Laboratory (SHMs) Advanced Membranes and Porous Materials Center (AMPMC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Aiping Chen
- Clean Combustion Research Center (CCRC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Niveen M. Khashab
- Smart Hybrid Materials Laboratory (SHMs) Advanced Membranes and Porous Materials Center (AMPMC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|