Takezawa Y, Sakakibara S, Shionoya M. Bipyridine-Modified DNA Three-Way Junctions with Amide linkers: Metal-Dependent Structure Induction and Self-Sorting.
Chemistry 2021;
27:16626-16633. [PMID:
34623721 DOI:
10.1002/chem.202102977]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Indexed: 11/12/2022]
Abstract
DNA three-way junction (3WJ) structures are essential building blocks for the construction of DNA nanoarchitectures. We have synthesized a bipyridine (bpy)-modified DNA 3WJ by using a newly designed bpy-modified nucleoside, Ubpy -3, in which a bpy ligand is tethered via a stable amide linker. The thermal stability of the bpy-modified 3WJ was greatly enhanced by the formation of an interstrand NiII (bpy)3 complex at the junction core (ΔTm =+17.7 °C). Although the stereochemistry of the modification site differs from that of the previously reported bpy-modified nucleoside Ubpy -2, the degree of the NiII -mediated stabilization observed with Ubpy -3 was comparable to that of Ubpy -2. Structure induction of the 3WJs and the duplexes was carried out by the addition or removal of NiII ions. Furthermore, NiII -mediated self-sorting of 3WJs was performed by using the bpy-modified strands and their unmodified counterparts. Both transformations were driven by the formation of NiII (bpy)3 complexes. The structural induction and self-sorting of bpy-modified 3WJs are expected to have many potential applications in the development of metal-responsive DNA materials.
Collapse