1
|
Li X, Qin Z, Deng Y, Wu Z, Hu W. Development and Challenges of Biphasic Membrane-Less Redox Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105468. [PMID: 35377562 PMCID: PMC9189683 DOI: 10.1002/advs.202105468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Ion exchange membranes (IEMs) play important roles in energy generation and storage field, such as fuel cell, flow battery, however, a major barrier in the way of large-scale application is the high cost of membranes (e.g., Nafion membranes price generally exceeds USD$ 200 m-2 ). The membrane-less technology is one of the promising approaches to solve the problem and thus has attracted much attention and been explored in a variety of research paths. This review introduces one of the representative membrane-less battery types, Biphasic membrane-less redox batteries that eliminate the IEMs according to the principle of solvent immiscibility and realizes the phase splitting in a thermodynamically stable state. It is systematically classified and summarizes their performances as well as the problems they are suffering from, and then several effective solutions are proposed based on the modification of electrodes and electrolytes. Finally, special attention is given to the challenges and prospects of Biphasic membrane-less redox batteries, which could contribute to the development of membrane-less batteries.
Collapse
Affiliation(s)
- Xinyu Li
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of EducationTianjin UniversityTianjin300072China
| | - Zhenbo Qin
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of EducationTianjin UniversityTianjin300072China
| | - Yida Deng
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of EducationTianjin UniversityTianjin300072China
- Key Laboratory of Composite and Functional MaterialsSchool of Material Science and EngineeringTianjin UniversityTianjin300072China
| | - Zhong Wu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of EducationTianjin UniversityTianjin300072China
- Key Laboratory of Composite and Functional MaterialsSchool of Material Science and EngineeringTianjin UniversityTianjin300072China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of EducationTianjin UniversityTianjin300072China
- Key Laboratory of Composite and Functional MaterialsSchool of Material Science and EngineeringTianjin UniversityTianjin300072China
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207China
| |
Collapse
|
2
|
Liu X, Song X, Guo Z, Bian T, Zhang J, Zhao Y. Biphasic Electrolyte Inhibiting the Shuttle Effect of Redox Molecules in Lithium‐Metal Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiao Liu
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Xiaosheng Song
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Zhijie Guo
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Tengfei Bian
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Jin Zhang
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| |
Collapse
|
3
|
Liu X, Song X, Guo Z, Bian T, Zhang J, Zhao Y. Biphasic Electrolyte Inhibiting the Shuttle Effect of Redox Molecules in Lithium-Metal Batteries. Angew Chem Int Ed Engl 2021; 60:16360-16365. [PMID: 34019317 DOI: 10.1002/anie.202104003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/11/2021] [Indexed: 11/11/2022]
Abstract
Redox molecules (RMs) as electron carriers have been widely used in electrochemical energy-storage devices (ESDs), such as lithium redox flow batteries and lithium-O2 batteries. Unfortunately, migration of RMs to the lithium (Li) anode leads to side reactions, resulting in reduced coulombic efficiency and early cell death. Our proof-of-concept study utilizes a biphasic organic electrolyte to resolve this issue, in which nonafluoro-1,1,2,2-tetrahydrohexyl-trimethoxysilane (NFTOS) and ether (or sulfone) with lithium bis(trifluoromethane)sulfonimide (LiTFSI) can be separated to form the immiscible anolyte and catholyte. RMs are extracted to the catholyte due to the enormous solubility coefficients in the biphasic electrolytes with high and low polarity, resulting in inhibition of the shuttle effect. When coupled with a lithium anode, the Li-Li symmetric, Li redox flow and Li-O2 batteries can achieve considerably prolonged cycle life with biphasic electrolytes. This concept provides a promising strategy to suppress the shuttle effect of RMs in ESDs.
Collapse
Affiliation(s)
- Xiao Liu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xiaosheng Song
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Zhijie Guo
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Tengfei Bian
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Jin Zhang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
4
|
Guo W, Han Q, Jiao J, Wu W, Zhu X, Chen Z, Zhao Y. In situ Construction of Robust Biphasic Surface Layers on Lithium Metal for Lithium–Sulfide Batteries with Long Cycle Life. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Wei Guo
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Qing Han
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Junrong Jiao
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Wenhao Wu
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Xuebing Zhu
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Zhonghui Chen
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| |
Collapse
|
5
|
Guo W, Han Q, Jiao J, Wu W, Zhu X, Chen Z, Zhao Y. In situ Construction of Robust Biphasic Surface Layers on Lithium Metal for Lithium-Sulfide Batteries with Long Cycle Life. Angew Chem Int Ed Engl 2021; 60:7267-7274. [PMID: 33372332 DOI: 10.1002/anie.202015049] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/15/2020] [Indexed: 11/08/2022]
Abstract
Lithium-sulfur (Li-S) batteries have potential in high energy density battery systems. However, intermediates of lithium polysulfides (LiPSs) can easily shuttle to the Li anode and react with Li metal to deplete the active materials and cause rapid failure of the battery. A facile solution pretreatment method for Li anodes involving a solution of metal fluorides/dimethylsulfoxide was developed to construct robust biphasic surface layers (BSLs) in situ. The BSLs consist of lithiophilic alloy (Lix M) and LiF phases on Li metal, which inhibit the shuttle effect and increase the cycle life of Li-S batteries. The BSLs allow Li+ transport and they inhibit dendrite growth and shield the Li anodes from corrosive reaction with LiPSs. Li-S batteries containing BSLs-Li anodes demonstrate excellent cycling over 1000 cycles at 1 C and simultaneously maintain a high coulombic efficiency of 98.2 %. Based on our experimental and theoretical results, we propose a strategy for inhibition of the shuttle effect that produces high stability Li-S batteries.
Collapse
Affiliation(s)
- Wei Guo
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Qing Han
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Junrong Jiao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Wenhao Wu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xuebing Zhu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Zhonghui Chen
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
6
|
Fu J, Ji X, Chen J, Chen L, Fan X, Mu D, Wang C. Lithium Nitrate Regulated Sulfone Electrolytes for Lithium Metal Batteries. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009575] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jiale Fu
- Department of Chemical and Biomolecular Engineering University of Maryland College Park MD 20742 USA
- School of Materials Science and Engineering Beijing Key Laboratory of Environment Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Xiao Ji
- Department of Chemical and Biomolecular Engineering University of Maryland College Park MD 20742 USA
| | - Ji Chen
- Department of Chemical and Biomolecular Engineering University of Maryland College Park MD 20742 USA
| | - Long Chen
- Department of Chemical and Biomolecular Engineering University of Maryland College Park MD 20742 USA
| | - Xiulin Fan
- Department of Chemical and Biomolecular Engineering University of Maryland College Park MD 20742 USA
| | - Daobin Mu
- School of Materials Science and Engineering Beijing Key Laboratory of Environment Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering University of Maryland College Park MD 20742 USA
| |
Collapse
|
7
|
Fu J, Ji X, Chen J, Chen L, Fan X, Mu D, Wang C. Lithium Nitrate Regulated Sulfone Electrolytes for Lithium Metal Batteries. Angew Chem Int Ed Engl 2020; 59:22194-22201. [DOI: 10.1002/anie.202009575] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/23/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Jiale Fu
- Department of Chemical and Biomolecular Engineering University of Maryland College Park MD 20742 USA
- School of Materials Science and Engineering Beijing Key Laboratory of Environment Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Xiao Ji
- Department of Chemical and Biomolecular Engineering University of Maryland College Park MD 20742 USA
| | - Ji Chen
- Department of Chemical and Biomolecular Engineering University of Maryland College Park MD 20742 USA
| | - Long Chen
- Department of Chemical and Biomolecular Engineering University of Maryland College Park MD 20742 USA
| | - Xiulin Fan
- Department of Chemical and Biomolecular Engineering University of Maryland College Park MD 20742 USA
| | - Daobin Mu
- School of Materials Science and Engineering Beijing Key Laboratory of Environment Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering University of Maryland College Park MD 20742 USA
| |
Collapse
|
8
|
Yoo D, Yang S, Kim KJ, Choi JW. Fluorinated Aromatic Diluent for High‐Performance Lithium Metal Batteries. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003663] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dong‐Joo Yoo
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Sungyun Yang
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Ki Jae Kim
- Department of Energy Engineering Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 05029 Republic of Korea
| | - Jang Wook Choi
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| |
Collapse
|
9
|
Yoo D, Yang S, Kim KJ, Choi JW. Fluorinated Aromatic Diluent for High‐Performance Lithium Metal Batteries. Angew Chem Int Ed Engl 2020; 59:14869-14876. [DOI: 10.1002/anie.202003663] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/15/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Dong‐Joo Yoo
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Sungyun Yang
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Ki Jae Kim
- Department of Energy Engineering Konkuk University 120 Neungdong-ro, Gwangjin-gu Seoul 05029 Republic of Korea
| | - Jang Wook Choi
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| |
Collapse
|