1
|
Lander AJ, Jin Y, Luk LYP. D-Peptide and D-Protein Technology: Recent Advances, Challenges, and Opportunities. Chembiochem 2023; 24:e202200537. [PMID: 36278392 PMCID: PMC10805118 DOI: 10.1002/cbic.202200537] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Indexed: 11/08/2022]
Abstract
Total chemical protein synthesis provides access to entire D-protein enantiomers enabling unique applications in molecular biology, structural biology, and bioactive compound discovery. Key enzymes involved in the central dogma of molecular biology have been prepared in their D-enantiomeric forms facilitating the development of mirror-image life. Crystallization of a racemic mixture of L- and D-protein enantiomers provides access to high-resolution X-ray structures of polypeptides. Additionally, D-enantiomers of protein drug targets can be used in mirror-image phage display allowing discovery of non-proteolytic D-peptide ligands as lead candidates. This review discusses the unique applications of D-proteins including the synthetic challenges and opportunities.
Collapse
Affiliation(s)
- Alexander J. Lander
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Yi Jin
- Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Louis Y. P. Luk
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
2
|
Ma W, Wu H, Liu S, Wei T, Li XD, Liu H, Li X. Chemical Synthesis of Proteins with Base-Labile Posttranslational Modifications Enabled by a Boc-SPPS Based General Strategy Towards Peptide C-Terminal Salicylaldehyde Esters. Angew Chem Int Ed Engl 2023; 62:e202214053. [PMID: 36344442 DOI: 10.1002/anie.202214053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 11/09/2022]
Abstract
Chemical synthesis of proteins bearing base-labile post-translational modifications (PTMs) is a challenging task. For instance, O-acetylation and S-palmitoylation PTMs cannot survive Fmoc removal conditions during Fmoc-solid phase peptide synthesis (SPPS). In this work, we developed a new Boc-SPPS-based strategy for the synthesis of peptide C-terminal salicylaldehyde (SAL) esters, which are the key reaction partner in Ser/Thr ligation and Cys/Pen ligation. The strategy utilized the semicarbazone-modified aminomethyl (AM) resin, which could support the Boc-SPPS and release the peptide SAL ester upon treatment with TFA/H2 O and pyruvic acid. The non-oxidative aldehyde regeneration was fully compatible with all the canonical amino acids. Armed with this strategy, we finished the syntheses of the O-acetylated protein histone H3(S10ac, T22ac) and the hydrophobic S-palmitoylated peptide derived from caveolin-1.
Collapse
Affiliation(s)
- Wenjie Ma
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam road, Hong Kong SAR, P. R. China
| | - Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam road, Hong Kong SAR, P. R. China
| | - Sha Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam road, Hong Kong SAR, P. R. China
| | - Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam road, Hong Kong SAR, P. R. China
| | - Xiang David Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam road, Hong Kong SAR, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam road, Hong Kong SAR, P. R. China
| |
Collapse
|
3
|
Hanna CC, Kriegesmann J, Dowman LJ, Becker CFW, Payne RJ. Chemical Synthesis and Semisynthesis of Lipidated Proteins. Angew Chem Int Ed Engl 2022; 61:e202111266. [PMID: 34611966 PMCID: PMC9303669 DOI: 10.1002/anie.202111266] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/24/2022]
Abstract
Lipidation is a ubiquitous modification of peptides and proteins that can occur either co- or post-translationally. An array of different lipid classes can adorn proteins and has been shown to influence a number of crucial biological activities, including the regulation of signaling, cell-cell adhesion events, and the anchoring of proteins to lipid rafts and phospholipid membranes. Whereas nature employs a range of enzymes to install lipid modifications onto proteins, the use of these for the chemoenzymatic generation of lipidated proteins is often inefficient or impractical. An alternative is to harness the power of modern synthetic and semisynthetic technologies to access lipid-modified proteins in a pure and homogeneously modified form. This Review aims to highlight significant advances in the development of lipidation and ligation chemistry and their implementation in the synthesis and semisynthesis of homogeneous lipidated proteins that have enabled the influence of these modifications on protein structure and function to be uncovered.
Collapse
Affiliation(s)
- Cameron C. Hanna
- School of ChemistryThe University of SydneySydneyNSW2006Australia
| | - Julia Kriegesmann
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaViennaAustria
| | - Luke J. Dowman
- School of ChemistryThe University of SydneySydneyNSW2006Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australia
| | | | - Richard J. Payne
- School of ChemistryThe University of SydneySydneyNSW2006Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
4
|
Hanna CC, Kriegesmann J, Dowman LJ, Becker CFW, Payne RJ. Chemische Synthese und Semisynthese von lipidierten Proteinen. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202111266. [PMID: 38504765 PMCID: PMC10947004 DOI: 10.1002/ange.202111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/11/2022]
Abstract
AbstractLipidierung ist eine ubiquitäre Modifikation von Peptiden und Proteinen, die entweder co‐ oder posttranslational auftreten kann. Für die Vielzahl von Lipidklassen wurde gezeigt, dass diese viele entscheidende biologische Aktivitäten, z. B. die Regulierung der Signalweiterleitung, Zell‐Zell‐Adhäsion sowie die Anlagerung von Proteinen an Lipid‐Rafts und Phospholipidmembranen, beeinflussen. Während die Natur Enzyme nutzt, um Lipidmodifikationen in Proteine einzubringen, ist ihre Nutzung für die chemoenzymatische Herstellung von lipidierten Proteinen häufig ineffizient. Eine Alternative ist die Kombination moderner synthetischer und semisynthetischer Techniken, um lipidierte Proteine in reiner und homogen modifizierter Form zu erhalten. Dieser Aufsatz erörtert Fortschritte in der Entwicklung der Lipidierungs‐ und Ligationschemie und deren Anwendung in der Synthese und Semisynthese homogen lipidierter Proteine, die es ermöglichen, den Einfluss dieser Modifikationen auf die Proteinstruktur und ‐funktion zu untersuchen.
Collapse
Affiliation(s)
- Cameron C. Hanna
- School of ChemistryThe University of SydneySydneyNSW2006Australien
| | - Julia Kriegesmann
- Institut für Biologische ChemieFakultät für ChemieUniversität WienWienÖsterreich
| | - Luke J. Dowman
- School of ChemistryThe University of SydneySydneyNSW2006Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australien
| | | | - Richard J. Payne
- School of ChemistryThe University of SydneySydneyNSW2006Australien
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSW2006Australien
| |
Collapse
|
5
|
Hojo H, Takei T, Asahina Y, Okumura N, Takao T, So M, Suetake I, Sato T, Kawamoto A, Hirabayashi Y. Total Synthesis and Structural Characterization of Caveolin‐1. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hironobu Hojo
- Institute for Protein Research Osaka University Osaka 565-0871 Japan
| | - Toshiki Takei
- Institute for Protein Research Osaka University Osaka 565-0871 Japan
| | - Yuya Asahina
- Institute for Protein Research Osaka University Osaka 565-0871 Japan
| | - Nobuaki Okumura
- Institute for Protein Research Osaka University Osaka 565-0871 Japan
| | - Toshifumi Takao
- Institute for Protein Research Osaka University Osaka 565-0871 Japan
| | - Masatomo So
- Institute for Protein Research Osaka University Osaka 565-0871 Japan
| | - Isao Suetake
- Nakamura Gakuen University Fukuoka 814-0198 Japan
| | - Takeshi Sato
- Kyoto Pharmaceutical University Kyoto 607-8414 Japan
| | - Akihiro Kawamoto
- Institute for Protein Research Osaka University Osaka 565-0871 Japan
| | - Yoshio Hirabayashi
- RIKEN Cluster for Pioneering Research Saitama 351-0198 Japan
- Institute for Environmental and Gender-Specific Medicine Juntendo University Graduate School of Medicine Chiba 279-0021 Japan
| |
Collapse
|
6
|
Hojo H, Takei T, Asahina Y, Okumura N, Takao T, So M, Suetake I, Sato T, Kawamoto A, Hirabayashi Y. Total Synthesis and Structural Characterization of Caveolin-1. Angew Chem Int Ed Engl 2021; 60:13900-13905. [PMID: 33825275 DOI: 10.1002/anie.202100826] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 11/06/2022]
Abstract
Caveolin-1, which is an essential protein for caveola formation, was chemically synthesized. It is composed of 177 amino acid residues, is triply palmitoylated at the C-terminal region, and is inserted into the lipid bilayer to form a V-shaped structure in the middle of the polypeptide chain. The entire sequence was divided into five peptide segments, each of which was synthesized by the solid-phase method. To improve the solubility of the C-terminal region, O-acyl isopeptide structures were incorporated. After ligation by the thioester method and the introduction of the palmitoyl groups, all the protecting groups were removed and the isopeptide structures were converted into the native peptide bond. Finally, the obtained polypeptide was successfully inserted into bicelles, thus showing the success of the synthesis.
Collapse
Affiliation(s)
- Hironobu Hojo
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Toshiki Takei
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Yuya Asahina
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Nobuaki Okumura
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Toshifumi Takao
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Masatomo So
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Isao Suetake
- Nakamura Gakuen University, Fukuoka, 814-0198, Japan
| | - Takeshi Sato
- Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Akihiro Kawamoto
- Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Yoshio Hirabayashi
- RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan.,Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, 279-0021, Japan
| |
Collapse
|