1
|
Li J, Luo T, He Y, Liu H, Deng Z, Bu J, Long X, Zhong S, Yang Y. Discovery of the Rnase activity of CRISPR-Cas12a and its distinguishing cleavage efficiency on various substrates. Chem Commun (Camb) 2022; 58:2540-2543. [PMID: 35099480 DOI: 10.1039/d1cc06295f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We, herein, indicated for the first time the Rnase activities of LbCas12a on linear ssRNA above 11 bases, and hairpin RNA substrates. Meanwhile, the LbCas12a bound to ssDNA or ssRNA exhibited different cleavage efficiencies on various substrates, including short ssDNA, hairpin DNA, linear ssRNA and hairpin RNA. With hairpin DNA as a reporter, we attained a detection limit of 5 pM and 50 pM for the ssDNA and ssRNA targets, respectively. We believe that these findings will pave a new avenue for expanding the reporter toolbox for Cas12a-based diagnostics in biosensing and biochemistry.
Collapse
Affiliation(s)
- Jiacheng Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Tong Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Yao He
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - ZhiWei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Xi Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| |
Collapse
|
2
|
Lin Z, Nielsen J, Liu Z. Bioprospecting Through Cloning of Whole Natural Product Biosynthetic Gene Clusters. Front Bioeng Biotechnol 2020; 8:526. [PMID: 32582659 PMCID: PMC7290108 DOI: 10.3389/fbioe.2020.00526] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of penicillin, natural products and their derivatives have been a valuable resource for drug discovery. With recent development of genome mining approaches in the post-genome era, a great number of natural product biosynthetic gene clusters (BGCs) have been identified and these can potentially be exploited for the discovery of novel natural products that can find application as pharmaceuticals. Since many BGCs are silent or do not express in native hosts under laboratory conditions, heterologous expression of BGCs in genetically tractable hosts becomes an attractive route to activate these BGCs to discover the corresponding products. Here, we highlight recent achievements in cloning and discovery of natural product biosynthetic pathways via intact BGC capturing, and discuss the prospects of high-throughput and multiplexed cloning of rational-designed gene clusters in the future.
Collapse
Affiliation(s)
- Zhenquan Lin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,BioInnovation Institute, Copenhagen, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|