1
|
Ruban SM, Ramadass K, Singh G, Talapaneni SN, Kamalakar G, Gadipelly CR, Mannepalli LK, Sugi Y, Vinu A. Organocatalysis with carbon nitrides. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2188879. [PMID: 37007670 PMCID: PMC10054243 DOI: 10.1080/14686996.2023.2188879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Carbon nitrides, a distinguished class of metal-free catalytic materials, have presented a good potential for chemical transformations and are expected to become prominent materials for organocatalysis. This is largely possible due to their low cost, exceptional thermal and chemical stability, non-toxicity, ease of functionalization, porosity development, etc. Especially, the carbon nitrides with increased porosity and nitrogen contents are more versatile than their bulk counterparts for catalysis. These N-rich carbon nitrides are discussed in the earlier parts of the review. Later, the review highlights the role of such carbon nitride materials for the various organic catalytic reactions including Knoevenagel condensation, oxidation, hydrogenation, esterification, transesterification, cycloaddition, and hydrolysis. The recently emerging concepts in carbon nitride-based organocatalysis have been given special attention. In each of the sections, the structure-property relationship of the materials was discussed and related to their catalysis action. Relevant comparisons with other catalytic materials are also discussed to realize their real potential value. The perspective, challenges, and future directions are also discussed. The overall objective of this review is to provide up-to-date information on new developments in carbon nitride-based organic catalysis reactions that could see them rising as prominent catalytic materials in the future.
Collapse
Affiliation(s)
- Sujanya Maria Ruban
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, Australia
| | - Kavitha Ramadass
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, Australia
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, Australia
| | | | - Gunda Kamalakar
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | - Yoshihiro Sugi
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, Australia
- Faculty of Engineering, Gifu University, Gifu, Japan
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, Australia
| |
Collapse
|
2
|
Takeshima A, Kano T. Diethylzinc-Mediated Cross-Coupling Reactions between Dibromoketones and Monobromo Carbonyl Compounds. Angew Chem Int Ed Engl 2023; 62:e202217496. [PMID: 36583678 DOI: 10.1002/anie.202217496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
A novel route to synthesize 1,4-dicarbonyl compounds is described. α,α-Dibromoketones generate zinc enolates through a diethylzinc-mediated halogen-metal exchange and react with α-bromocarbonyl compounds to furnish 1,4-dicarbonyl compounds via a second generation of zinc enolates. This cross-coupling reaction is enabled by the chemoselective formation of zinc enolates from α,α-dibromoketones in the presence of α-bromocarbonyl compounds. Chiral 1,4-dicarbonyl compounds can be obtained via the enantioselective bromination of aldehydes using a chiral secondary amine catalyst and a subsequent cross-coupling reaction between the resulting chiral α-bromoaldehydes and α,α-dibromoacetophenones.
Collapse
Affiliation(s)
- Aika Takeshima
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.,Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Taichi Kano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
3
|
Del Vecchio A, Sinibaldi A, Nori V, Giorgianni G, Di Carmine G, Pesciaioli F. Synergistic Strategies in Aminocatalysis. Chemistry 2022; 28:e202200818. [PMID: 35666172 PMCID: PMC9539941 DOI: 10.1002/chem.202200818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 12/20/2022]
Abstract
Synergistic catalysis offers the unique possibility of simultaneous activation of both the nucleophile and the electrophile in a reaction. A requirement for this strategy is the stability of the active species towards the reaction conditions and the two concerted catalytic cycles. Since the beginning of the century, aminocatalysis has been established as a platform for the stereoselective activation of carbonyl compounds through HOMO-raising or LUMO-lowering. The burgeoning era of aminocatalysis has been driven by a deep understanding of these activation and stereoinduction modes, thanks to the introduction of versatile and privileged chiral amines. The aim of this review is to cover recent developments in synergistic strategies involving aminocatalysis in combination with organo-, metal-, photo-, and electro-catalysis, focusing on the evolution of privileged aminocatalysts architectures.
Collapse
Affiliation(s)
- Antonio Del Vecchio
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| | - Arianna Sinibaldi
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| | - Valeria Nori
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| | - Giuliana Giorgianni
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| | - Graziano Di Carmine
- Department of Chemical, Pharmaceutical and Agricultural Sciences Università degli Studi di FerraraVia Fossato di Mortara 1744121FerraraItaly
| | - Fabio Pesciaioli
- Department of Physical and Chemical Sciences Università degli Studidell'Aquilavia Vetoio67100L'AquilaItaly
| |
Collapse
|
4
|
Abderrazak Y, Bhattacharyya A, Reiser O. Durch sichtbares Licht induzierte Homolyse unedler, gut verfügbarer Metallsubstratkomplexe: Eine komplementäre Aktivierungsstrategie in der Photoredoxkatalyse. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Youssef Abderrazak
- Institut für Organische Chemie Universität Regensburg Universitätsstraße 31 93053 Regensburg Deutschland
| | - Aditya Bhattacharyya
- Institut für Organische Chemie Universität Regensburg Universitätsstraße 31 93053 Regensburg Deutschland
| | - Oliver Reiser
- Institut für Organische Chemie Universität Regensburg Universitätsstraße 31 93053 Regensburg Deutschland
| |
Collapse
|
5
|
Abderrazak Y, Bhattacharyya A, Reiser O. Visible-Light-Induced Homolysis of Earth-Abundant Metal-Substrate Complexes: A Complementary Activation Strategy in Photoredox Catalysis. Angew Chem Int Ed Engl 2021; 60:21100-21115. [PMID: 33599363 PMCID: PMC8519011 DOI: 10.1002/anie.202100270] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/17/2021] [Indexed: 01/16/2023]
Abstract
The mainstream applications of visible-light photoredox catalysis predominately involve outer-sphere single-electron transfer (SET) or energy transfer (EnT) processes of precious metal RuII or IrIII complexes or of organic dyes with low photostability. Earth-abundant metal-based Mn Ln -type (M=metal, Ln =polydentate ligands) complexes are rapidly evolving as alternative photocatalysts as they offer not only economic and ecological advantages but also access to the complementary inner-sphere mechanistic modes, thereby transcending their inherent limitations of ultrashort excited-state lifetimes for use as effective photocatalysts. The generic process, termed visible-light-induced homolysis (VLIH), entails the formation of suitable light-absorbing ligated metal-substrate complexes (Mn Ln -Z; Z=substrate) that can undergo homolytic cleavage to generate Mn-1 Ln and Z. for further transformations.
Collapse
Affiliation(s)
- Youssef Abderrazak
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Aditya Bhattacharyya
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Oliver Reiser
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| |
Collapse
|
6
|
Petek N, Brodnik H, Grošelj U, Svete J, Požgan F, Štefane B. Visible-Light Driven Selective C-N Bond Scission in anti-Bimane-Like Derivatives. Org Lett 2021; 23:5294-5298. [PMID: 34077227 PMCID: PMC8832495 DOI: 10.1021/acs.orglett.1c01376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, we report the photochemical transformation of pyrazolo[1,2-a]pyrazolone substrates that reach an excited state upon irradiation with visible light to initiate the homolytic C-N bond cleavage process that yields the corresponding N1-substituted pyrazoles. Moreover, chemoselective heterolytic C-N bond cleavage is possible in the pyrazolo[1,2-a]pyrazole core in the presence of bromomalonate.
Collapse
Affiliation(s)
- Nejc Petek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Helena Brodnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Uroš Grošelj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Jurij Svete
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Franc Požgan
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Bogdan Štefane
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Kurose A, Ishida Y, Hirata G, Nishikata T. Direct α‐Tertiary Alkylations of Ketones in a Combined Copper–Organocatalyst System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ayako Kurose
- Graduate School of Science and Engineering Yamaguchi University 2-16-1 Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Yuto Ishida
- Graduate School of Science and Engineering Yamaguchi University 2-16-1 Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Goki Hirata
- Graduate School of Science and Engineering Yamaguchi University 2-16-1 Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering Yamaguchi University 2-16-1 Tokiwadai Ube Yamaguchi 755-8611 Japan
| |
Collapse
|
8
|
Kurose A, Ishida Y, Hirata G, Nishikata T. Direct α-Tertiary Alkylations of Ketones in a Combined Copper-Organocatalyst System. Angew Chem Int Ed Engl 2021; 60:10620-10625. [PMID: 33826789 DOI: 10.1002/anie.202016051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 11/07/2022]
Abstract
Herein, we report an efficient method for the tertiary alkylation of a ketone by using an α-bromocarbonyl compound as the tertiary alkyl source in a combined Cu-organocatalyst system. This dual catalyst system enables the addition of a tertiary alkyl radical to an enamine. Mechanistic studies revealed that the catalytically generated enamine is a key intermediate in the catalytic cycle. The developed method can be used to synthesize substituted 1,4-dicarbonyl compounds containing quaternary carbons bearing various alkyl chains.
Collapse
Affiliation(s)
- Ayako Kurose
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Yuto Ishida
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Goki Hirata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
9
|
Nakatsuji Y, Kobayashi Y, Masuda S, Takemoto Y. Azolium/Hydroquinone Organo-Radical Co-Catalysis: Aerobic C-C-Bond Cleavage in Ketones. Chemistry 2021; 27:2633-2637. [PMID: 33258523 DOI: 10.1002/chem.202004943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/30/2020] [Indexed: 01/25/2023]
Abstract
Organo-radical catalysts have recently attracted great interest, and the development of this field can be expected to broaden the applications of organocatalysis. Herein, the first example of a radical-generating system is reported that does not require any photoirradiation, radical initiators, or preactivated substrates. The oxidative C-C-bond cleavage of 2-substituted cyclohexanones was achieved using an azolium salt and a hydroquinone as co-catalysts. A catalytic mechanism was proposed based on the results of diffusion-ordered spectroscopy and cyclic voltammetry measurements, as well as computational studies.
Collapse
Affiliation(s)
- Yuya Nakatsuji
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Kobayashi
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Sakyo Masuda
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Panferova LI, Zubkov MO, Kokorekin VA, Levin VV, Dilman AD. Using the Thiyl Radical for Aliphatic Hydrogen-Atom Transfer: Thiolation of Unactivated C-H Bonds. Angew Chem Int Ed Engl 2020; 60:2849-2854. [PMID: 33146419 DOI: 10.1002/anie.202011400] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/10/2020] [Indexed: 12/18/2022]
Abstract
A metal- and catalyst-free thiyl-radical-mediated activation of alkanes is described. Tetrafluoropyridinyl disulfide is used to perform thiolation of the C-H bonds under irradiation with 400 nm light-emitting diodes. The key C-H activation step is believed to proceed via hydrogen-atom abstraction effected by the fluorinated thiyl radical. Secondary, tertiary, and heteroatom-substituted C-H bonds can be involved in the thiolation reaction. The resulting sulfides have wide potential as photoredox-active radical precursors in reactions with alkenes and heteroarenes.
Collapse
Affiliation(s)
- Liubov I Panferova
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Vladimir A Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| |
Collapse
|
11
|
Panferova LI, Zubkov MO, Kokorekin VA, Levin VV, Dilman AD. Using the Thiyl Radical for Aliphatic Hydrogen‐Atom Transfer: Thiolation of Unactivated C−H Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liubov I. Panferova
- N. D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Mikhail O. Zubkov
- N. D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Vladimir A. Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| |
Collapse
|
12
|
Xiao X, Shao B, Lu Y, Cao Q, Xia C, Chen F. Recent Advances in Asymmetric Organomulticatalysis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000961] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiao Xiao
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 People's Republic China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic China
| | - Bing‐Xuan Shao
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 People's Republic China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic China
| | - Yin‐Jie Lu
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 People's Republic China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic China
| | - Qian‐Qian Cao
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 People's Republic China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic China
| | - Chun‐Nian Xia
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 People's Republic China
| | - Fen‐Er Chen
- Institute of Pharmaceutical Science and Technology Zhejiang University of Technology Hangzhou 310014 People's Republic China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Fudan University Shanghai 200433 People's Republic China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 People's Republic China
| |
Collapse
|
13
|
A Rational Approach to Organo‐Photocatalysis: Novel Designs and Structure‐Property Relationships. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006416] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Vega‐Peñaloza A, Mateos J, Companyó X, Escudero‐Casao M, Dell'Amico L. A Rational Approach to Organo‐Photocatalysis: Novel Designs and Structure‐Property Relationships. Angew Chem Int Ed Engl 2020; 60:1082-1097. [DOI: 10.1002/anie.202006416] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/14/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Alberto Vega‐Peñaloza
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Javier Mateos
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Xavier Companyó
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | | | - Luca Dell'Amico
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
15
|
Gao J, Feng J, Du D. Shining Light on C−S Bonds: Recent Advances in C−C Bond Formation Reactions via C−S Bond Cleavage under Photoredox Catalysis. Chem Asian J 2020; 15:3637-3659. [DOI: 10.1002/asia.202000905] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Jian Gao
- Department of Chemistry State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 P. R. China
| | - Jie Feng
- Department of Chemistry State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 P. R. China
| | - Ding Du
- Department of Chemistry State Key Laboratory of Natural Medicines China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 P. R. China
| |
Collapse
|
16
|
Fuks E, Huber L, Schinkel T, Trapp O. Investigation of Straightforward, Photoinduced Alkylations of Electron‐Rich Heterocompounds with Electron‐Deficient Alkyl Bromides in the Sole Presence of 2,6‐Lutidine. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elina Fuks
- Department of Chemistry Ludwig Maximilian University Munich Butenandtstr. 5‐13 81377 Munich Germany
| | - Laura Huber
- Department of Chemistry Ludwig Maximilian University Munich Butenandtstr. 5‐13 81377 Munich Germany
| | - Thea Schinkel
- Department of Chemistry Ludwig Maximilian University Munich Butenandtstr. 5‐13 81377 Munich Germany
| | - Oliver Trapp
- Department of Chemistry Ludwig Maximilian University Munich Butenandtstr. 5‐13 81377 Munich Germany
- Max‐Planck‐Institute for Astronomy Königstuhl 17 69117 Heidelberg Germany
| |
Collapse
|
17
|
Im H, Choi W, Hong S. Photocatalytic Vicinal Aminopyridylation of Methyl Ketones by a Double Umpolung Strategy. Angew Chem Int Ed Engl 2020; 59:17511-17516. [DOI: 10.1002/anie.202008435] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Honggu Im
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Wonjun Choi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
18
|
Im H, Choi W, Hong S. Photocatalytic Vicinal Aminopyridylation of Methyl Ketones by a Double Umpolung Strategy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Honggu Im
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Wonjun Choi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|