1
|
Walther R, Monge P, Pedersen AB, Benderoth A, Pedersen JN, Farzadfard A, Mandrup OA, Howard KA, Otzen DE, Zelikin AN. Per-glycosylation of the Surface-Accessible Lysines: One-Pot Aqueous Route to Stabilized Proteins with Native Activity. Chembiochem 2021; 22:2478-2485. [PMID: 33998129 DOI: 10.1002/cbic.202100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 11/11/2022]
Abstract
Chemical glycosylation of proteins is a powerful tool applied widely in biomedicine and biotechnology. However, it is a challenging undertaking and typically relies on recombinant proteins and site-specific conjugations. The scope and utility of this nature-inspired methodology would be broadened tremendously by the advent of facile, scalable techniques in glycosylation, which are currently missing. In this work, we investigated a one-pot aqueous protocol to achieve indiscriminate, surface-wide glycosylation of the surface accessible amines (lysines and/or N-terminus). We reveal that this approach afforded minimal if any change in the protein activity and recognition events in biochemical and cell culture assays, but at the same time provided a significant benefit of stabilizing proteins against aggregation and fibrillation - as demonstrated on serum proteins (albumins and immunoglobulin G, IgG), an enzyme (uricase), and proteins involved in neurodegenerative disease (α-synuclein) and diabetes (insulin). Most importantly, this highly advantageous result was achieved via a one-pot aqueous protocol performed on native proteins, bypassing the use of complex chemical methodologies and recombinant proteins.
Collapse
Affiliation(s)
- Raoul Walther
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
| | - Pere Monge
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
| | | | - Anja Benderoth
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
| | | | - Azad Farzadfard
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Ole A Mandrup
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Alexander N Zelikin
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, 8000, Denmark
| |
Collapse
|
2
|
Wu C, Wu KJ, Liu JB, Wang W, Leung CH, Ma DL. Structure-guided discovery of a luminescent theranostic toolkit for living cancer cells and the imaging behavior effect. Chem Sci 2020; 11:11404-11412. [PMID: 34094382 PMCID: PMC8162881 DOI: 10.1039/d0sc04576d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/23/2020] [Indexed: 01/12/2023] Open
Abstract
Dual-functional theranostics are powerful tools that can allow for the in-field understanding of cancer pathology, yet their use is held back by the paucity of suitable theranostics for living systems. Moreover, typical in vitro screening conditions for probe molecules do not necessarily generate candidates that can function effectively in the natural in cellulo environment, limiting their follow-up use in living systems. We introduce herein a general strategy for the development of an iridium(iii) theranostic by grafting a well-known inhibitor as a "binding unit" onto an iridium(iii) complex precursor as a "signaling unit". To further optimize their emissive properties, we explored the effect of imaging behavior by incorporating different substituents onto the parental "signaling unit". This design concept was validated by a series of tailored iridium(iii) theranostics 2a-2h for the visualization and inhibition of EGFR in living cancer cells. By comprehensively assessing the theranostic potency of 2a-2h in both in vitro and in cellulo contexts, probe 2f containing electron-donating methoxy groups on the "signaling unit" was discovered to be the most promising candidate theranostic with desirable photophysical/chemical properties. Probe 2f selectively bound to EGFR in vitro and in cellulo, enabling it to selectively discriminate living EGFR-overexpressing cancer cells from normal cells that express low levels of EGFR with an "always-on" luminescence signal output. In particular, its long-lived lifetime enabled its luminescence signal to be readily distinguished from the interfering fluorescence of organic dyes by using time-resolved techniques. Complex 2f simultaneously visualized and inhibited EGFR in a dose-dependent manner, leading to a reduction in the phosphorylation of downstream proteins ERK and MEK, and inhibition of the activity of downstream transcription factor AP1. Notably, complex 2f is comparable to the parental EGFR inhibitor 1b, in terms of both inhibitory activity against EGFR and cytotoxicity against EGFR-overexpressing cancer cells. This tailored dual-functional iridium(iii) theranostic toolkit provides an alternative strategy for the personalized diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Chun Wu
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR 999077
| | - Ke-Jia Wu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau Taipa Macau SAR 999078
| | - Jin-Biao Liu
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR 999077
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology Ganzhou China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR 999077
| | - Chung-Hang Leung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau Taipa Macau SAR 999078
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR 999077
| |
Collapse
|