1
|
Ziebert F, Dokonon KG, Kulić IM. Reshaping and enzymatic activity may allow viruses to move through the mucus. SOFT MATTER 2024; 20:7185-7198. [PMID: 39221536 DOI: 10.1039/d4sm00592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Filamentous viruses like influenza and torovirus often display systematic bends and arcs of mysterious physical origin. We propose that such viruses undergo an instability from a cylindrically symmetric to a toroidally curved state. This "toro-elastic" state emerges via spontaneous symmetry breaking under prestress due to short range spike protein interactions magnified by surface topography. Once surface stresses are sufficiently large, the filament buckles and the curved state constitutes a soft mode that can potentially propagate through the filament's material frame around a Mexican-hat-type potential. In the mucus of our airways, which constitutes a soft, porous 3D network, glycan chains are omnipresent and influenza's spike proteins are known to efficiently bind and cut them. We next show that such a non-equilibrium enzymatic reaction can induce spontaneous rotation of the curved state, leading to a whole body reshaping propulsion similar to - but different from - eukaryotic flagella and spirochetes.
Collapse
Affiliation(s)
- Falko Ziebert
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany.
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Kenan G Dokonon
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Igor M Kulić
- Institut Charles Sadron UPR22-CNRS, 67034 Strasbourg, France
- Institute Theory of Polymers, Leibniz-Institute of Polymer Research, D-01069 Dresden, Germany.
| |
Collapse
|
2
|
Ito KI, Sato Y, Toyabe S. Design of artificial molecular motor inheriting directionality and scalability. Biophys J 2024; 123:858-866. [PMID: 38425042 PMCID: PMC10995430 DOI: 10.1016/j.bpj.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Realizing artificial molecular motors with autonomous functionality and high performance is a major challenge in biophysics. Such motors not only provide new perspectives in biotechnology but also offer a novel approach for the bottom-up elucidation of biological molecular motors. Directionality and scalability are critical factors for practical applications. However, the simultaneous realization of both remains challenging. In this study, we propose a novel design for a rotary motor that can be fabricated using a currently available technology, DNA origami, and validate its functionality through simulations with practical parameters. We demonstrate that the motor rotates unidirectionally and processively in the direction defined by structural asymmetry, which induces kinetic asymmetry in motor motion. The motor also exhibits scalability, such that increasing the number of connections between the motor and stator allows for a larger speed, run length, and stall force.
Collapse
Affiliation(s)
- Kenta I Ito
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Yusuke Sato
- Department of Intelligent and Control Systems, Kyushu Institute of Technology, Fukuoka, Japan
| | - Shoichi Toyabe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| |
Collapse
|
3
|
Jahnke K, Göpfrich K. Engineering DNA-based cytoskeletons for synthetic cells. Interface Focus 2023; 13:20230028. [PMID: 37577007 PMCID: PMC10415745 DOI: 10.1098/rsfs.2023.0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023] Open
Abstract
The development and bottom-up assembly of synthetic cells with a functional cytoskeleton sets a major milestone to understand cell mechanics and to develop man-made machines on the nano- and microscale. However, natural cytoskeletal components can be difficult to purify, deliberately engineer and reconstitute within synthetic cells which therefore limits the realization of multifaceted functions of modern cytoskeletons in synthetic cells. Here, we review recent progress in the development of synthetic cytoskeletons made from deoxyribonucleic acid (DNA) as a complementary strategy. In particular, we explore the capabilities and limitations of DNA cytoskeletons to mimic functions of natural cystoskeletons like reversible assembly, cargo transport, force generation, mechanical support and guided polymerization. With recent examples, we showcase the power of rationally designed DNA cytoskeletons for bottom-up assembled synthetic cells as fully engineerable entities. Nevertheless, the realization of dynamic instability, self-replication and genetic encoding as well as contractile force generating motors remains a fruitful challenge for the complete integration of multifunctional DNA-based cytoskeletons into synthetic cells.
Collapse
Affiliation(s)
- Kevin Jahnke
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120 Heidelberg, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Center for Molecular Biology (ZMBH), Heidelberg University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Mills A, Aissaoui N, Finkel J, Elezgaray J, Bellot G. Mechanical DNA Origami to Investigate Biological Systems. Adv Biol (Weinh) 2023; 7:e2200224. [PMID: 36509679 DOI: 10.1002/adbi.202200224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/25/2022] [Indexed: 12/15/2022]
Abstract
The ability to self-assemble DNA nanodevices with programmed structural dynamics that can sense and respond to the local environment can enable transformative applications in fields including mechanobiology and nanomedicine. The responsive function of biomolecules is often driven by alterations in conformational distributions mediated by highly sensitive interactions with the local environment. In this review, the current state-of-the-art in constructing complex DNA geometries with dynamic and mechanical properties to enable a molecular scale force measurement is first summarized. Next, an overview of engineering modular DNA devices that interact with cell surfaces is highlighted detailing examples of mechanosensitive proteins and the force-induced dynamic molecular interaction on the downstream biochemical signaling. Finally, the challenges and an outlook on this promising class of DNA devices acting as nanomachines to operate at a low piconewton range suitable for a majority of biological effects or as hybrid materials to achieve higher tension exertion required for other biological investigations, are discussed.
Collapse
Affiliation(s)
- Allan Mills
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| | - Nesrine Aissaoui
- Laboratoire CiTCoM, Faculté de Santé, Université Paris Cité, CNRS, Paris, 75006, France
| | - Julie Finkel
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| | - Juan Elezgaray
- CRPP, CNRS, UMR 5031, Université de Bordeaux, Pessac, 33600, France
| | - Gaëtan Bellot
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| |
Collapse
|
5
|
Ruiz PAS, Ziebert F, Kulić IM. Physics of self-rolling viruses. Phys Rev E 2022; 105:054411. [PMID: 35706307 DOI: 10.1103/physreve.105.054411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Viruses are right at the interface of inanimate matter and life. However, recent experiments [Sakai et al., J. Virol. 92, e01522-17 (2018)0022-538X10.1128/JVI.01522-17] have shown that some influenza strains can actively roll on glycan-covered surfaces. In a previous letter [Ziebert and Kulić, Phys. Rev. Lett. 126, 218101 (2021)0031-900710.1103/PhysRevLett.126.218101] we suggested this to be a form of viral surface metabolism: a collection of spike proteins that attach to and cut the glycans act as a self-organized mechano-chemical motor. Here we study in more depth the physics of the emergent self-rolling states. We give scaling arguments how the motion arises, substantiated by a detailed analytical theory that yields the full torque-angular velocity relation of the self-organized motor. Stochastic Gillespie simulations are used to validate the theory and to quantify stochastic effects like virus detachment and reversals of its direction. Finally, we also cross-check several approximations made previously and show that the proposed mechanism is very robust. All these results point together to the statistical inevitability of viral rolling in the presence of enzymatic activity.
Collapse
Affiliation(s)
- Pedro A Soria Ruiz
- Institute for Theoretical Physics, Heidelberg University, D-69120 Heidelberg, Germany
| | - Falko Ziebert
- Institute for Theoretical Physics, Heidelberg University, D-69120 Heidelberg, Germany
- BioQuant, Heidelberg University, D-69120 Heidelberg, Germany
| | - Igor M Kulić
- Institut Charles Sadron UPR22-CNRS, F-67034 Strasbourg, France
- Institute Theory of Polymers, Leibniz-Institute of Polymer Research, D-01069 Dresden, Germany
| |
Collapse
|
6
|
Deal BR, Ma R, Ma VPY, Su H, Kindt JT, Salaita K. Engineering DNA-Functionalized Nanostructures to Bind Nucleic Acid Targets Heteromultivalently with Enhanced Avidity. J Am Chem Soc 2020; 142:9653-9660. [PMID: 32338896 PMCID: PMC7340273 DOI: 10.1021/jacs.0c01568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Improving the affinity of nucleic acids to their complements is an important goal for many fields spanning from genomics to antisense therapy and diagnostics. One potential approach to achieving this goal is to use multivalent binding, which often boosts the affinity between ligands and receptors, as exemplified by virus-cell binding and antibody-antigen interactions. Herein, we investigate the binding of heteromultivalent DNA-nanoparticle conjugates, where multiple unique oligonucleotides displayed on a nanoparticle form a multivalent complex with a long DNA target containing the complementary sequences. By developing a strategy to spatially pattern oligonucleotides on a nanoparticle, we demonstrate that the molecular organization of heteromultivalent nanostructures is critical for effective binding; patterned particles have a ∼23 order-of-magnitude improvement in affinity compared to chemically identical particles patterned incorrectly. We envision that nanostructures presenting spatially patterned heteromultivalent DNA will offer important biomedical applications given the utility of DNA-functionalized nanostructures in diagnostics and therapeutics.
Collapse
|