1
|
Qiao D, Chen Y, Tan H, Zhou R, Feng J. De novo design of transmembrane nanopores. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Shen J, Ye R, Liu Z, Zeng H. Hybrid Pyridine–Pyridone Foldamer Channels as M2‐Like Artificial Proton Channels. Angew Chem Int Ed Engl 2022; 61:e202200259. [DOI: 10.1002/anie.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Jie Shen
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Ruijuan Ye
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry Rowan University 201 Mullica Hill Road Glassboro NJ 08028 USA
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
3
|
Shen J, Ye R, Liu Z, Zeng H. Hybrid Pyridine–Pyridone Foldamer Channels as M2‐Like Artificial Proton Channels. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Shen
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Ruijuan Ye
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry Rowan University 201 Mullica Hill Road Glassboro NJ 08028 USA
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
4
|
Hou J, Jiang X, Yang F, Wang L, Yan T, Liu S, Xu J, Hou C, Luo Q, Liu J. Supramolecularly regulated artificial transmembrane signal transduction for 'ON/OFF'-switchable enzyme catalysis. Chem Commun (Camb) 2022; 58:5725-5728. [PMID: 35441622 DOI: 10.1039/d2cc01421a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An artificial signal transduction model with a supramolecular recognition headgroup, a membrane anchoring group, and a pro-enzyme catalysis endgroup was constructed. The transmembrane translocation of the transducer can be reversibly regulated by competitive host-guest complexations as an input signal to control an enzyme reaction inside the lipid vesicles.
Collapse
Affiliation(s)
- Jinxing Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Xiaojia Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Feihu Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Liang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Tengfei Yan
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shengda Liu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiayun Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China. .,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
5
|
Shen J, Ye R, Zeng H. Crystal Packing‐Guided Construction of Hetero‐Oligomeric Peptidic Ensembles as Synthetic 3‐in‐1 Transporters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jie Shen
- Department of Chemistry College of Science Hainan University Haikou Hainan 570228 China
| | - Ruijuan Ye
- Department of Chemistry College of Science Hainan University Haikou Hainan 570228 China
| | - Huaqiang Zeng
- Department of Chemistry College of Science Hainan University Haikou Hainan 570228 China
| |
Collapse
|
6
|
Shen J, Ye R, Zeng H. Crystal Packing-Guided Construction of Hetero-Oligomeric Peptidic Ensembles as Synthetic 3-in-1 Transporters. Angew Chem Int Ed Engl 2021; 60:12924-12930. [PMID: 33755290 DOI: 10.1002/anie.202101489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Strategies to generate heteromeric peptidic ensembles via a social self-sorting process are limited. Herein, we report a crystal packing-inspired social self-sorting strategy broadly applicable to diverse types of H-bonded peptidic frameworks. Specifically, a crystal structure of H-bonded alkyl chain-appended monopeptides reveals an inter-chain separation distance of 4.8 Å dictated by the H-bonded amide groups, which is larger than 4.1 Å separation distance desired by the tightly packed straight alkyl chains. This incompatibility results in loosely packed alkyl chains, prompting us to investigate and validate the feasibility of applying bulky tert-butyl groups, modified with an anion-binding group, to alternatively interpenetrate the straight alkyl chains, modified with a crown ether group. Structurally, this social self-sorting approach generates highly stable hetero-oligomeric ensembles, having alternated anion- and cation-binding units vertically aligned to the same side. Functionally, these hetero-oligomeric ensembles promote transmembrane transport of cations, anions and more interestingly zwitterionic species such as amino acids.
Collapse
Affiliation(s)
- Jie Shen
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, 570228, China
| | - Ruijuan Ye
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, 570228, China
| | - Huaqiang Zeng
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
7
|
Chen H, Liu Y, Cheng X, Fang S, Sun Y, Yang Z, Zheng W, Ji X, Wu Z. Self‐Assembly of Size‐Controlled
m
‐Pyridine–Urea Oligomers and Their Biomimetic Chloride Ion Channels. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hualong Chen
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Yajing Liu
- School of Pharmaceutical Science Capital Medical University Beijing 100069 China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Senbiao Fang
- School of Computer Science and Engineering Central South University Changsha 410012 China
| | - Yuli Sun
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Zequn Yang
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Wei Zheng
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Xunming Ji
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
- Institute of Hypoxia Medicine Xuanwu Hospital Capital Medical University Beijing 100053 China
| | - Zehui Wu
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| |
Collapse
|
8
|
Chen H, Liu Y, Cheng X, Fang S, Sun Y, Yang Z, Zheng W, Ji X, Wu Z. Self-Assembly of Size-Controlled m-Pyridine-Urea Oligomers and Their Biomimetic Chloride Ion Channels. Angew Chem Int Ed Engl 2021; 60:10833-10841. [PMID: 33624345 DOI: 10.1002/anie.202102174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 01/06/2023]
Abstract
The m-pyridine urea (mPU) oligomer was constructed by using the intramolecular hydrogen bond formed by the pyridine nitrogen atom and the NH of urea and the intermolecular hydrogen bond of the terminal carbonyl group and the NH of urea. Due to the synergistic effect of hydrogen bonds, mPU oligomer folds and exhibits strong self-assembly behaviour. Affected by folding, mPU oligomer generates a twisted plane, and one of its important features is that the carbonyl group of the urea group orientates outwards from the twisted plane, while the NHs tend to direct inward. This feature is beneficial to NH attraction for electron-rich species. Among them, the trimer self-assembles into helical nanotubes, and can efficiently transport chloride ions. This study provides a novel and efficient strategy for constructing self-assembled biomimetic materials for electron-rich species transmission.
Collapse
Affiliation(s)
- Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Yajing Liu
- School of Pharmaceutical Science, Capital Medical University, Beijing, 100069, China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Senbiao Fang
- School of Computer Science and Engineering, Central South University, Changsha, 410012, China
| | - Yuli Sun
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Zequn Yang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Wei Zheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China.,Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
9
|
Marshall SR, Singh A, Wagner JN, Busschaert N. Enhancing the selectivity of optical sensors using synthetic transmembrane ion transporters. Chem Commun (Camb) 2020; 56:14455-14458. [PMID: 33146644 DOI: 10.1039/d0cc06437h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Herein, we introduce a new method to optimize the properties of optical sensors, coined the transporter-liposome-fluorophore (TLF) approach. It is shown that this approach can greatly improve the selectivity of the sensor, increase the dynamic range and maintain the sensitivity of the original fluorophore.
Collapse
Affiliation(s)
- Sarah R Marshall
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | | | | | | |
Collapse
|
10
|
Shen J, Fan J, Ye R, Li N, Mu Y, Zeng H. Polypyridine‐Based Helical Amide Foldamer Channels: Rapid Transport of Water and Protons with High Ion Rejection. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jie Shen
- The NanoBio Lab 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Jingrong Fan
- School of Biological Sciences Nanyang Technological University Singapore 637551 Singapore
| | - Ruijuan Ye
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Ning Li
- The NanoBio Lab 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Yuguang Mu
- School of Biological Sciences Nanyang Technological University Singapore 637551 Singapore
| | - Huaqiang Zeng
- The NanoBio Lab 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| |
Collapse
|
11
|
Shen J, Fan J, Ye R, Li N, Mu Y, Zeng H. Polypyridine-Based Helical Amide Foldamer Channels: Rapid Transport of Water and Protons with High Ion Rejection. Angew Chem Int Ed Engl 2020; 59:13328-13334. [PMID: 32346957 DOI: 10.1002/anie.202003512] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/10/2020] [Indexed: 12/31/2022]
Abstract
Synthetic strategies that enable rapid construction of covalent organic nanotubes with an angstrom-scale tubular pore remain scarcely reported. Reported here is a remarkably simple and mild one-pot polymerization protocol, employing POCl3 as the polymerization agent. This protocol efficiently generates polypyridine amide foldamer-based covalent organic nanotubes with a 2.8 nm length at a yield of 50 %. Trapping single-file water chains in the 2.8 Å tubular cavity, rich in hydrogen-bond donors and acceptors, these tubular polypyridine ensembles rapidly and selectively transport water at a rate of 1.6×109 H2 O⋅S-1 ⋅channel-1 and protons at a speed as fast as gramicidin A, with a high rejection of ions.
Collapse
Affiliation(s)
- Jie Shen
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Jingrong Fan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Ruijuan Ye
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Ning Li
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Huaqiang Zeng
- The NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| |
Collapse
|