1
|
Ren H, Wang H, Wen W, Li S, Li N, Huo F, Yin C. A summary of calixarene-based fluorescent sensors developed during the past five years. Chem Commun (Camb) 2023; 59:13790-13799. [PMID: 37946569 DOI: 10.1039/d3cc04179d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Calixarenes are "chalice like" phenol-based macrocycles that are one of the most fascinating studied scaffolds in supramolecular chemistry. Their preorganized nonpolar cavities and ion binding sites, and their well-defined conformations all lay important foundations for forming host-guest complexes. Conjugation of calixarene scaffolds with various fluorophores at either upper or lower rims has led to the development of smart fluorescent probes for inorganic molecules or ions, aliphatic or aromatic compounds, biomolecules, temperature and hypoxia, even multi-component traditional Chinese medicine (TCM). Moreover, significant advancements have been made for biological applications. This review critically summarizes the recent advances made in these areas.
Collapse
Affiliation(s)
- Haixian Ren
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, China.
| | - Hongliang Wang
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, China.
| | - Wei Wen
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, China.
| | - Sha Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, China.
| | - Nana Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, China.
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, China.
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
2
|
Chen X, Chen H, Fraser Stoddart J. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angew Chem Int Ed Engl 2023; 62:e202211387. [PMID: 36131604 PMCID: PMC10099103 DOI: 10.1002/anie.202211387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/02/2023]
Abstract
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Xiao‐Yang Chen
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
| | - Hongliang Chen
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
3
|
Yang K, Hua B, Qi S, Bai B, Yu C, Huang F, Yu G. Suprasomes Based on Host-Guest Molecular Recognition: An Excellent Alternative to Liposomes in Cancer Theranostics. Angew Chem Int Ed Engl 2022; 61:e202213572. [PMID: 36261392 DOI: 10.1002/anie.202213572] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 11/07/2022]
Abstract
Liposomes and polymersomes, typical vesicular drug delivery systems (DDSs), have faced some limitations in cancer theranostics. Suprasomes, supramolecular vesicles assembled from amphiphiles linked by noncovalent interactions, show potential as new generation of vesicular DDSs. We construct suprasomes based on host-guest recognition, by which the desired functions can be integrated into carriers without tedious synthesis. Photothermally active host-guest complex is formed between a functional guest and pillar[5]arene, which further self-assembles into hollow suprasomes. A supramolecular nanomedicine is developed by encapsulating cisplatin in the suprasomes. The obtained cisplatin@Suprasomes achieve excellent anticancer efficacy and anti-metastasis combining chemotherapy and photothermal therapy, which ablate the tumors without relapse and metastasis. This work demonstrates the facile functionalization of suprasomes, holding promise as alternatives to liposomes and polymersomes.
Collapse
Affiliation(s)
- Kai Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Bin Hua
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shaolong Qi
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Bing Bai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Ma F, Qiao X, Zuo W, Tao Y, Li A, Luo Z, Liu Y, Liu X, Wang X, Sun W, Jia C. Less is More: A Shortcut for Anionocages Design Based on (RPO
3
2−
)‐Monourea Coordination. Angew Chem Int Ed Engl 2022; 61:e202210478. [DOI: 10.1002/anie.202210478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Fen Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xinrui Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wei Zuo
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries School of Environmental and Chemical Engineering Xi'an Polytechnic University Xi'an 710600 China
| | - Yu Tao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Zhipeng Luo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Yuqi Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xueru Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xiaoqing Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Chuandong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education Shaanxi Key Laboratory for Carbon Neutral Technology College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| |
Collapse
|
5
|
Ma F, Qiao X, Zuo W, Tao Y, Li A, Luo Z, Liu Y, Liu X, Wang X, Sun W, Jia C. Less is More: A Shortcut for Anionocages Design Based on (RPO32‐)‐Monourea Coordination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fen Ma
- Northwest University College of Chemistry and Materials Science CHINA
| | - Xinrui Qiao
- Northwest University College of Chemistry and Materials Science CHINA
| | - Wei Zuo
- Xi'an Polytechnic University College of Emvironmental and Chemical Engineering CHINA
| | - Yu Tao
- Northwest University College of Chemistry and Materials Science CHINA
| | - Anyang Li
- Northwest University College of Chemistry and Materials Science CHINA
| | - Zhipeng Luo
- Northwest University College of Chemistry and Materials Science CHINA
| | - Yuqi Liu
- Northwest University College of Chemistry and Materials Science CHINA
| | - Xueru Liu
- Northwest University College of Chemistry and Materials Science CHINA
| | - Xiaoqing Wang
- Northwest University College of Chemistry and Materials Science CHINA
| | - Wei Sun
- Northwest University College of Chemistry and Materials Science CHINA
| | - Chuandong Jia
- Northwest University College of Chemistry and Materials Science No.1, Xuefu Ave. Chang'an District 710127 Xi'an CHINA
| |
Collapse
|
6
|
Simões JB, Leite da Silva D, Fernandes SA, de Fátima Â. Calix[n]arenes in Action: Recent Applications in Organocatalysis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | - Ângelo de Fátima
- Universidade Federal de Minas Gerais Departamento de Química Av. Pres. Antônio Carlos, 6627, Pampulha 31270-901 Belo Horizonte BRAZIL
| |
Collapse
|
7
|
Bhattacharya S, Barba‐Bon A, Zewdie TA, Müller AB, Nisar T, Chmielnicka A, Rutkowska IA, Schürmann CJ, Wagner V, Kuhnert N, Kulesza PJ, Nau WM, Kortz U. Discrete, Cationic Palladium(II)-Oxo Clusters via f-Metal Ion Incorporation and their Macrocyclic Host-Guest Interactions with Sulfonatocalixarenes. Angew Chem Int Ed Engl 2022; 61:e202203114. [PMID: 35384204 PMCID: PMC9324968 DOI: 10.1002/anie.202203114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Indexed: 12/28/2022]
Abstract
We report on the discovery of the first two examples of cationic palladium(II)-oxo clusters (POCs) containing f-metal ions, [PdII6 O12 M8 {(CH3 )2 AsO2 }16 (H2 O)8 ]4+ (M=CeIV , ThIV ), and their physicochemical characterization in the solid state, in solution and in the gas phase. The molecular structure of the two novel POCs comprises an octahedral {Pd6 O12 }12- core that is capped by eight MIV ions, resulting in a cationic, cubic assembly {Pd6 O12 MIV8 }20+ , which is coordinated by a total of 16 terminal dimethylarsinate and eight water ligands, resulting in the mixed PdII -CeIV /ThIV oxo-clusters [PdII6 O12 M8 {(CH3 )2 AsO2 }16 (H2 O)8 ]4+ (M=Ce, Pd6 Ce8 ; Th, Pd6 Th8 ). We have also studied the formation of host-guest inclusion complexes of Pd6 Ce8 and Pd6 Th8 with anionic 4-sulfocalix[n]arenes (n=4, 6, 8), resulting in the first examples of discrete, enthalpically-driven supramolecular assemblies between large metal-oxo clusters and calixarene-based macrocycles. The POCs were also found to be useful as pre-catalysts for electrocatalytic CO2 -reduction and HCOOH-oxidation.
Collapse
Affiliation(s)
- Saurav Bhattacharya
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Andrea Barba‐Bon
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Tsedenia A. Zewdie
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Anja B. Müller
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Talha Nisar
- Department of Physics and Earth SciencesJacobs UniversityCampus Ring 128759BremenGermany
| | - Anna Chmielnicka
- Faculty of ChemistryUniversity of WarsawPasteura 102-093WarsawPoland
| | | | | | - Veit Wagner
- Department of Physics and Earth SciencesJacobs UniversityCampus Ring 128759BremenGermany
| | - Nikolai Kuhnert
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Pawel J. Kulesza
- Faculty of ChemistryUniversity of WarsawPasteura 102-093WarsawPoland
| | - Werner M. Nau
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Ulrich Kortz
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| |
Collapse
|
8
|
Bhattacharya S, Barba‐Bon A, Zewdie TA, Müller AB, Nisar T, Chmielnicka A, Rutkowska IA, Schürmann CJ, Wagner V, Kuhnert N, Kulesza PJ, Nau WM, Kortz U. Discrete, Cationic Palladium(II)‐Oxo Clusters via f‐Metal Ion Incorporation and their Macrocyclic Host‐Guest Interactions with Sulfonatocalixarenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Saurav Bhattacharya
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Andrea Barba‐Bon
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Tsedenia A. Zewdie
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Anja B. Müller
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Talha Nisar
- Department of Physics and Earth Sciences Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Anna Chmielnicka
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Iwona A. Rutkowska
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | | | - Veit Wagner
- Department of Physics and Earth Sciences Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Nikolai Kuhnert
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Pawel J. Kulesza
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Werner M. Nau
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry Jacobs University Campus Ring 1 28759 Bremen Germany
| |
Collapse
|
9
|
Vial L, Perret F, Leclaire J. Dyn[
n
]arenes: Versatile Platforms To Study the Interplay between Covalent and Noncovalent Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Laurent Vial
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246 CNRS Univ. Lyon Université Lyon 1 CPE INSA 43 Boulevard du 11 Novembre 1918 69622 Villeurbanne France
| | - Florent Perret
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246 CNRS Univ. Lyon Université Lyon 1 CPE INSA 43 Boulevard du 11 Novembre 1918 69622 Villeurbanne France
| | - Julien Leclaire
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246 CNRS Univ. Lyon Université Lyon 1 CPE INSA 43 Boulevard du 11 Novembre 1918 69622 Villeurbanne France
| |
Collapse
|
10
|
Huo M, Dai X, Liu Y. Ultrahigh Supramolecular Cascaded Room‐Temperature Phosphorescence Capturing System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Man Huo
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Xian‐Yin Dai
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
11
|
Huo M, Dai XY, Liu Y. Ultrahigh Supramolecular Cascaded Room-Temperature Phosphorescence Capturing System. Angew Chem Int Ed Engl 2021; 60:27171-27177. [PMID: 34704341 DOI: 10.1002/anie.202113577] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 11/06/2022]
Abstract
An ultrahigh supramolecular cascaded phosphorescence-capturing aggregate was constructed by multivalent co-assembly of cucurbit[7]uril (CB[7]) and amphipathic sulfonatocalix[4]arene (SC4AD). The initial dibromophthalimide derivative (G) generated a weak phosphorescent emission at 505 nm by host-guest interaction with CB[7], which further assembled with SC4AD to form homogeneously spherical nanoparticles with a dramatic enhancement of both phosphorescence lifetime to 1.13 ms and emission intensity by 40-fold. Notably, this G⊂CB[7]@SC4AD aggregate exhibited efficient phosphorescence energy transfer to Rhodamine B (RhB) and benzothiadiazole (DBT) with high efficiency (ϕET ) of 84.4 % and 76.3 % and an antenna effect (AE) of 289.4 and 119.5, respectively, and then each of these can function as a bridge to further transfer their energy to second near-IR acceptors Cy5 or Nile blue (NiB) to achieve cascaded phosphorescence energy transfer. The final aggregate with long-range effect from 425 nm to 800 nm and long-lived photoluminescence was further employed as an imaging agent for multicolour cell labeling.
Collapse
Affiliation(s)
- Man Huo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
12
|
Baldini L, Casnati A, Sansone F. Multivalent and Multifunctional Calixarenes in Bionanotechnology. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Laura Baldini
- Department of Chemistry Life Sciences and Environmental Sustainability University of Parma Parco Area delle Scienze, 17/a 43124 Parma Italy
| | - Alessandro Casnati
- Department of Chemistry Life Sciences and Environmental Sustainability University of Parma Parco Area delle Scienze, 17/a 43124 Parma Italy
| | - Francesco Sansone
- Department of Chemistry Life Sciences and Environmental Sustainability University of Parma Parco Area delle Scienze, 17/a 43124 Parma Italy
| |
Collapse
|