1
|
Li Q, Liang Q, Zhang H, Jiao S, Zhuo Z, Wang J, Li Q, Zhang JN, Yu X. Unveiling the High-valence Oxygen Degradation Across the Delithiated Cathode Surface. Angew Chem Int Ed Engl 2023; 62:e202215131. [PMID: 36471651 DOI: 10.1002/anie.202215131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Charge compensation on anionic redox reaction (ARR) has been promising to realize extra capacity beyond transition metal redox in battery cathodes. The practical development of ARR capacity has been hindered by high-valence oxygen instability, particularly at cathode surfaces. However, the direct probe of surface oxygen behavior has been challenging. Here, the electronic states of surface oxygen are investigated by combining mapping of resonant Auger electronic spectroscopy (mRAS) and ambient pressure X-ray photoelectron spectroscopy (APXPS) on a model LiCoO2 cathode. The mRAS verified that no high-valence oxygen can sustain at cathode surfaces, while APXPS proves that cathode electrolyte interphase (CEI) layer evolves and oxidizes upon oxygen gas contact. This work provides valuable insights into the high-valence oxygen degradation mode across the interface. Oxygen stabilization from surface architecture is proven a prerequisite to the practical development of ARR active cathodes.
Collapse
Affiliation(s)
- Qinghao Li
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao, 266071, China.,Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qi Liang
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao, 266071, China
| | - Hui Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Sichen Jiao
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zengqing Zhuo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junyang Wang
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qiang Li
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao, 266071, China
| | - Jie-Nan Zhang
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiqian Yu
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
2
|
Understanding the Impact of Fe‐Doping on the Structure and Battery Performance of a Co‐Free Li‐Rich Layered Cathodes. ChemElectroChem 2023. [DOI: 10.1002/celc.202201072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
3
|
Shen Y, Wu Y, Xue H, Wang S, Yin D, Wang L, Cheng Y. Insight into the Coprecipitation-Controlled Crystallization Reaction for Preparing Lithium-Layered Oxide Cathodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:717-726. [PMID: 33389988 DOI: 10.1021/acsami.0c19493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The nucleation and growth of spherical Ni0.6Co0.2Mn0.2(OH)2 agglomerates using the hydroxide coprecipitation (HCP) method in the presence of ammonia is investigated through chemical equilibrium calculations and experiments. In the nucleation stage, the transition metal ions in the salt solution gradually complete the nucleation reaction in the diffusion process from pH 5.4 to 11 after dropping into the continuously stirred tank reactor, and then Me(NH3)n2+ and Me(OH)2(s) (Me: Ni, Co, and Mn) reach a dynamic precipitation dissolution equilibrium. In the growth stage, the concentration ratio of Me(NH3)n2+ and OH- (complexation and precipitation, Rc/p) in the solution has an important influence on obtaining high-quality materials, which is further confirmed using the first principles density functional theory calculations on surface energy and adsorption energy. Then, the HCP reaction could be divided into three parts through experiments: incomplete precipitation area (Rc/p > 10.1); time-dependent area (Rc/p = 0.1-10.1); and hard-to-control area (Rc/p <0.1). According to the optimal ratio (Rc/p = 3.4), a prediction formula for the optimal synthesis conditions of the materials is proposed (y = 0.7731 × ln(x + 0.0312) + 11.6708, the optimal pH value (y) corresponds to different ammonia concentrations (x)). The results obtained for the growth reaction mechanism and the prediction scheme would help the modification research of the materials and obtain the desired lithium-layered transition metal oxide cathode material with excellent performance in the shortest time.
Collapse
Affiliation(s)
- Yabin Shen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Yingqiang Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hongjin Xue
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Shaohua Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Dongming Yin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Limin Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei 230026, China
| | - Yong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|