Zeng Y, Quan Q, Wen P, Zhang Z, Chen M. Organocatalyzed Controlled Radical Copolymerization toward Hybrid Functional Fluoropolymers Driven by Light.
Angew Chem Int Ed Engl 2022;
61:e202215628. [PMID:
36329621 DOI:
10.1002/anie.202215628]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Photo-controlled polymerizations are attractive to tailor macromolecules of complex compositions with spatiotemporal regulation. In this work, with a convenient synthesis for trifluorovinyl boronic ester (TFVB), we report a light-driven organocatalyzed copolymerization of vinyl monomers and TFVB for the first time, which enabled the controlled synthesis of a variety of hybrid fluorine/boron polymers with low dispersities and good chain-end fidelity. The good behaviors of "ON/OFF" switch, chain-extension polymerizations and post-modifications further highlight the versatility and reliability of this copolymerization. Furthermore, we demonstrate that the combination of fluorine and boron could furnish copolymer electrolytes of high lithium-ion transference number (up to 0.83), bringing new opportunities of engineering high-performance materials for energy storage purposes.
Collapse