1
|
Zhu Y, Lai H, Gu Y, Wei Z, Chen L, Lai X, Han L, Tan P, Pu M, Xiao F, He F, Tian L. The Balance Effect of π-π Electronic Coupling on NIR-II Emission and Photodynamic Properties of Highly Hydrophobic Conjugated Photosensitizers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307569. [PMID: 38155495 PMCID: PMC10853711 DOI: 10.1002/advs.202307569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Indexed: 12/30/2023]
Abstract
Deep NIR organic phototheranostic molecules generally have large π-conjugation structures and show highly hydrophobic properties, thus, forming strong π-π stacking in the aqueous medium, which will affect the phototheranostic performance. Herein, an end-group strategy is developed to lift the performance of NIR-II emitting photosensitizers. Extensive characterizations reveal that the hydrogen-bonding interactions of the hydroxyl end group can induce a more intense π-π electronic coupling than the chlorination-mediated intermolecular forces. The results disclose that π-π stacking will lower fluorescence quantum yield but significantly benefit the photodynamic therapy (PDT) efficiency. Accordingly, an asymmetrically substituted derivative (BTIC-δOH-2Cl) is developed, which shows balanced phototheranostic properties with excellent PDT efficiency (14.6 folds of ICG) and high NIR-II fluorescence yield (2.27%). It proves the validity of the end-group strategy on controlling the π-π interactions and rational tuning the performance of NIR-II organic phototheranostic agents.
Collapse
Affiliation(s)
- Yulin Zhu
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Ying Gu
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Zixiang Wei
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Lin Chen
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Xue Lai
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Liang Han
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Pu Tan
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Mingrui Pu
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Fan Xiao
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Feng He
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518055China
| | - Leilei Tian
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
2
|
Kumar V, Chunchagatta Lakshman PK, Prasad TK, Manjunath K, Bairy S, Vasu AS, Ganavi B, Jasti S, Kamariah N. Target-based drug discovery: Applications of fluorescence techniques in high throughput and fragment-based screening. Heliyon 2024; 10:e23864. [PMID: 38226204 PMCID: PMC10788520 DOI: 10.1016/j.heliyon.2023.e23864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Target-based discovery of first-in-class therapeutics demands an in-depth understanding of the molecular mechanisms underlying human diseases. Precise measurements of cellular and biochemical activities are critical to gain mechanistic knowledge of biomolecules and their altered function in disease conditions. Such measurements enable the development of intervention strategies for preventing or treating diseases by modulation of desired molecular processes. Fluorescence-based techniques are routinely employed for accurate and robust measurements of in-vitro activity of molecular targets and for discovering novel chemical molecules that modulate the activity of molecular targets. In the current review, the authors focus on the applications of fluorescence-based high throughput screening (HTS) and fragment-based ligand discovery (FBLD) techniques such as fluorescence polarization (FP), Förster resonance energy transfer (FRET), fluorescence thermal shift assay (FTSA) and microscale thermophoresis (MST) for the discovery of chemical probe to exploring target's role in disease biology and ultimately, serve as a foundation for drug discovery. Some recent advancements in these techniques for compound library screening against important classes of drug targets, such as G-protein-coupled receptors (GPCRs) and GTPases, as well as phosphorylation- and acetylation-mediated protein-protein interactions, are discussed. Overall, this review presents a landscape of how these techniques paved the way for the discovery of small-molecule modulators and biologics against these targets for therapeutic benefits.
Collapse
Affiliation(s)
| | | | - Thazhe Kootteri Prasad
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Kavyashree Manjunath
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Sneha Bairy
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Akshaya S. Vasu
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - B. Ganavi
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Subbarao Jasti
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Neelagandan Kamariah
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| |
Collapse
|
3
|
He L, Li Q, Zhang Y, Huang K, Du B, Liang L. A naphthalimide functionalized fluoran with AIE effect for ratiometric sensing Hg 2+ and cell imaging application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122672. [PMID: 37003146 DOI: 10.1016/j.saa.2023.122672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/04/2023]
Abstract
The pollution caused by mercury ions (Hg2+) poses a potential threat to public health. Therefore, monitoring Hg2+ concentration in the environment is necessary and significant. In this work, a naphthalimide functionalized fluoran dye NAF has been prepared, which shows a new red-shift in emission at 550 nm with the maximum intensity in a mixture of water-CH3CN (v/v = 7/3) due to aggregating induced emission (AIE) effect. Meanwhile, NAF can be employed as a Hg2+ ions sensor, which displays a selective and sensitive response to Hg2+ ions by the reduced fluorescence of naphthalimide fluorophore and increased fluorescence of fluoran group, respectively, showing ratiometric fluorescence signal changes with more than 65-fold emission intensity ratio increase and naked eyes visible color change. In addition, the response time is fast (within 1 min) and the sensing can be conducted in a wide pH range (4.0-9.0). Moreover, the detection limit has been evaluated to be 5.5 nM. The sensing mechanism may be attributed to the formation of a π-extended conjugated system due to the Hg2+ ions-induced conversion of spironolactone to the ring-opened form, partially accompanied by the fluorescence resonance energy transfer (FRET) process. Significantly, NAF exhibits suitable cytotoxicity to living HeLa cells, which allows it to be utilized for ratiometric imaging of Hg2+ ions assisted by confocal fluorescence imaging.
Collapse
Affiliation(s)
- Liangyu He
- School of Chemistry and Chemical Engineering, Science Park, China West Normal University, Nanchong 637002, China
| | - Qi Li
- School of Chemistry and Chemical Engineering, Science Park, China West Normal University, Nanchong 637002, China
| | - Yaqing Zhang
- School of Chemistry and Chemical Engineering, Science Park, China West Normal University, Nanchong 637002, China
| | - Kun Huang
- School of Chemistry and Chemical Engineering, Science Park, China West Normal University, Nanchong 637002, China.
| | - Bingxin Du
- School of Chemistry and Chemical Engineering, Science Park, China West Normal University, Nanchong 637002, China.
| | - Lijuan Liang
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; Shanghai Frontier Innovation Research Institute, Shanghai 201108, China.
| |
Collapse
|
4
|
Sun H, He T, Zhang C, Wang S, Dong L, Li Z, Gu PY, Wang Z, Long G, Zhang Q. Structural Engineering of Red Luminogens to Realize High Emission Efficiency through ACQ-to-AIE Transformation. Chemistry 2023; 29:e202300029. [PMID: 36806228 DOI: 10.1002/chem.202300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 02/22/2023]
Abstract
Deep red/near-infrared (NIR, >650 nm) emissive organic luminophores with aggregation-induced emission (AIE) behaviours have emerged as promising candidates for applications in optoelectronic devices and biological fields. However, the molecular design philosophy for AIE luminogens (AIEgens) with narrow band gaps are rarely explored. Herein, we rationally designed two red organic luminophores, FITPA and FIMPA, by considering the enlargement of transition dipole moment in the charge-transfer state and the transformation from aggregation-caused quenching (ACQ) to AIE. The transition dipole moments were effectively enhanced with a "V-shaped" molecular configuration. Meanwhile, the ACQ-to-AIE transformation from FITPA to FIMPA was induced by a methoxy-substitution strategy. The experimental and theoretical results demonstrated that the ACQ-to-AIE transformation originated from a crystallization-induced emission (CIE) effect because of additional weak interactions in the aggregate state introduced by methoxy groups. Owing to the enhanced transition dipole moment and AIE behaviour, FIMPA presented intense luminescence covering the red-to-NIR region, with a photoluminescence quantum yield (PLQY) of up to 38 % in solid state. The promising cell-imaging performance further verified the great potential of FIMPA in biological applications. These results provide a guideline for the development of red and NIR AIEgens through comprehensive consideration of both the effect of molecular structure and molecular interactions in aggregate states.
Collapse
Affiliation(s)
- Hua Sun
- School of Material and Chemistry Engineering, School of Food and Biology Engineering, Xuzhou University of Technology, 2 Lishui Road, Yunlong District, 221018, Xuzhou, P. R. China
| | - Tengfei He
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, 300350, Tianjin, P. R. China
| | - Chuchen Zhang
- School of Material and Chemistry Engineering, School of Food and Biology Engineering, Xuzhou University of Technology, 2 Lishui Road, Yunlong District, 221018, Xuzhou, P. R. China
| | - Shifan Wang
- School of Material and Chemistry Engineering, School of Food and Biology Engineering, Xuzhou University of Technology, 2 Lishui Road, Yunlong District, 221018, Xuzhou, P. R. China
| | - Liming Dong
- School of Material and Chemistry Engineering, School of Food and Biology Engineering, Xuzhou University of Technology, 2 Lishui Road, Yunlong District, 221018, Xuzhou, P. R. China
| | - Zhao Li
- School of Material and Chemistry Engineering, School of Food and Biology Engineering, Xuzhou University of Technology, 2 Lishui Road, Yunlong District, 221018, Xuzhou, P. R. China
| | - Pei-Yang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, 213164, Changzhou, P. R. China
| | - Zhe Wang
- School of Material and Chemistry Engineering, School of Food and Biology Engineering, Xuzhou University of Technology, 2 Lishui Road, Yunlong District, 221018, Xuzhou, P. R. China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, 300350, Tianjin, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 999077, Hong Kong SAR, P. R. China
| |
Collapse
|
5
|
Masuda K, Omokawa R, Kawasaki R, Mise Y, Ooyama Y, Harada S, Shinoda W, Ikeda A. Fluorescence Turn-on of Tetraphenylethylene Derivative by Transfer from Cyclodextrin to Liposomes, HeLa Cells, and E. coli. Chemistry 2023; 29:e202203071. [PMID: 36415055 DOI: 10.1002/chem.202203071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Herein, trimethyl-β-cyclodextrin (TMe-β-CDx) and γ-cyclodextrin (γ-CDx) could dissolve a tetraphenylethylene derivative (TPE-OH4 ) in water through high-speed vibration milling. The fluorescence intensity of the TMe-β-CDx-TPE-OH4 complex was much higher than that of the γ-CDx-TPE-OH4 complex, as the rotation of the central C=C double bond of TPE-OH4 after photoactivation was inhibited in a smaller TMe-β-CDx cavity in comparison with the γ-CDx cavity. In contrast, the fluorescence intensity of the γ-CDx-TPE-OH4 complex was very weak; nevertheless, it increased after the addition of liposomes due to the transfer of TPE-OH4 from the γ-CDx cavity to the lipid membrane as a "turn-on" phenomenon. Furthermore, to apply temperature sensor, it was demonstrated that the fluorescence intensity in the liposomes depended on the phase-transition temperature. By using the fluorescence turn-on phenomenon, TPE-OH4 could detect the presence of HeLa cells and E. coli by fluorescence.
Collapse
Affiliation(s)
- Kosuke Masuda
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Riku Omokawa
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Riku Kawasaki
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Yuta Mise
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Yousuke Ooyama
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Shogo Harada
- Department of Materials Chemistry, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.,Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Atsushi Ikeda
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| |
Collapse
|
6
|
Gupta A, Adarsh T, Manchanda V, Sasmal PK, Gupta S. COVID-19 detection using AIE-active iridium complexes. Dalton Trans 2023; 52:1188-1192. [PMID: 36656120 DOI: 10.1039/d2dt03554e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The highly contagious COVID-19, caused by the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is commonly diagnosed using reverse transcription polymerase chain reaction (RT-PCR). However, despite being highly sensitive, RT-PCR is also time consuming and quite complex, which limits its use for point-of-care (POC) testing. We have developed a simple single-step fluorescence assay for SARS-CoV-2 RNA detection based on the principle of aggregation-induced emission (AIE) using iridium complexes. Our smartly designed iridium probes fluorescently "turn-on" in the presence of SARS-CoV-2 RNA and give specific results at room temperature within 10 min. The lower limit of detection (LOD) is 1.84 genome copies per reaction, and the sensitivity and specificity of the assay in 20 clinical samples are found to be 90% and 80%, respectively.
Collapse
Affiliation(s)
- Ajay Gupta
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Tarun Adarsh
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Vikas Manchanda
- Department of Microbiology, Maulana Azad Medical College, New Delhi 110002, India
| | - Pijus K Sasmal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Shalini Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
7
|
Marqués PS, Krajewska M, Frank BD, Prochaska K, Zeininger L. Morphology-Dependent Aggregation-Induced Emission of Janus Emulsion Surfactants. Chemistry 2023; 29:e202203790. [PMID: 36661211 DOI: 10.1002/chem.202203790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
We report a novel stimuli-responsive fluorescent material platform that relies on an evocation of aggregation-induced emission (AIE) from tetraphenylethylene (TPE)-based surfactants localized at one hemisphere of biphasic micro-scale Janus emulsion droplets. Dynamic alterations in the available interfacial area were evoked through surfactant-induced dynamic changes of the internal droplet morphology that can be modulated as a function of the balance of interfacial tensions of the droplet constituent phases. Thus, by analogy with a Langmuir-Blodgett trough that enables selective concentration of surfactants at a liquid-gas interface, we demonstrate here a method for controllable modulation of the available interfacial area of surfactant-functionalized liquid-liquid interfaces. We show that a morphology-dependent alteration of the interfacial area can be used to evoke an optical signal, by selectively assembling synthesized TPE-based surfactants on the respective droplet interfaces. A trigger-induced increase in the concentration of TPE-based surfactants at the liquid-liquid interfaces results in an evocation of aggregation-induced emission (AIE), inducing an up to 3.9-fold increase in the measured emission intensity of the droplets.
Collapse
Affiliation(s)
- Pablo Simón Marqués
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Martyna Krajewska
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Bradley D Frank
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Krystyna Prochaska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Lukas Zeininger
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
8
|
Li J, Bi Z, Wang L, Xia Y, Xie Y, Liu Y. Recent Advances in Strategies for Imaging Detection and Intervention of Cellular Senescence. Chembiochem 2023; 24:e202200364. [PMID: 36163425 DOI: 10.1002/cbic.202200364] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/14/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a stable cell cycle arrest state that can be triggered by a wide range of intrinsic or extrinsic stresses. Increased burden of senescent cells in various tissues is thought to contribute to aging and age-related diseases. Thus, the detection and interventions of senescent cells are critical for longevity and treatment of disease. However, the highly heterogeneous feature of senescence makes it challenging for precise detection and selective clearance of senescent cells in different age-related diseases. To address this issue, considerable efforts have been devoted to developing senescence-targeting molecular theranostic strategies, based on the potential biomarkers of cellular senescence. Herein, we review recent advances in the field of anti-senescence research and highlight the specific visualization and elimination of senescent cells. Additionally, the challenges in this emerging field are outlined.
Collapse
Affiliation(s)
- Jili Li
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zhengyan Bi
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yinghao Xia
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yuqi Xie
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
9
|
Suleymanov AA, Kraus BM, Damiens T, Ruggi A, Solari E, Scopelliti R, Fadaei‐Tirani F, Severin K. Fluorinated Tetraarylethenes: Universal Tags for the Synthesis of Solid State Luminogens. Angew Chem Int Ed Engl 2022; 61:e202213429. [DOI: 10.1002/anie.202213429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Abdusalom A. Suleymanov
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Barbara M. Kraus
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thibault Damiens
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Albert Ruggi
- Département de Chimie Université de Fribourg 1700 Fribourg Switzerland
| | - Euro Solari
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
10
|
Zeng Z, Ouyang J, Sun L, Zeng F, Wu S. A Biomarker-Responsive Nanosystem with Colon-Targeted Delivery for Ulcerative Colitis's Detection and Treatment with Optoacoustic/NIR-II Fluorescence Imaging. Adv Healthc Mater 2022; 11:e2201544. [PMID: 36098246 DOI: 10.1002/adhm.202201544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Indexed: 01/28/2023]
Abstract
Ulcerative colitis (UC) is a prevalent idiopathic inflammatory disease which causes such complications as intestinal perforation, obstruction, and bleeding, and thus deleteriously impacting people's normal work and quality of life. Hence, accurate diagnosis of UC is crucial in terms of planning optimal treatment plan. Herein, a pH/reactive oxygen species (ROS) dual-responsive nanosystem (BM@EP) is developed for UC's detection and therapy. BM@EP is composed of a chromophore-drug dyad and the enteric coating. The chromophore-drug dyad (BOD-XT-DHM) is synthesized by linking the chromophore (BOD-XT-BOH) and a flavonoid drug (dihydromyricetin DHM) through boronate ester bond. The enteric coating includes Eudragit S100 and poly(lactic-co-glycolic acid) (PLGA), the former is commonly employed as a pH-dependent polymer coating excipient so as to attain colon-targeted delivery, and the latter has been widely used as an excipient for the controlled-extended release. After oral administration, BM@EP delivers the dyad (BOD-XT-DHM) into the colon and releases the dyad molecules by being triggered by the alkaline pH in t colon, thereafter upon being stimulated by overexpressed H2 O2 in the inflamed colon, the boronate bond in the dyad is broken down and correspondingly the drug DHM is released for UC therapy, simultaneously the chromophore is released for near-infrared second window (NIR-II) fluorescence and optoacoustic imaging for UC diagnosis and recovery evaluation.
Collapse
Affiliation(s)
- Zhuo Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Juan Ouyang
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Lihe Sun
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
11
|
Suleymanov AA, Kraus BM, Damiens T, Ruggi A, Solari E, Scopelliti R, Fadaei‐Tirani F, Severin K. Fluorinated Tetraarylethenes: Universal Tags for the Synthesis of Solid State Luminogens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202213429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Abdusalom A. Suleymanov
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Barbara M. Kraus
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thibault Damiens
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Albert Ruggi
- Département de Chimie Université de Fribourg 1700 Fribourg Switzerland
| | - Euro Solari
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
12
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small‐Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism, and Applications. Angew Chem Int Ed Engl 2022; 61:e202207188. [DOI: 10.1002/anie.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Bin Fang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Yu Shen
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Li Fu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Wei Zhang
- Teaching and Evaluation Center of Air Force Medical University Xi'an 710032 China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| |
Collapse
|
13
|
Shimomura Y, Igawa K, Sasaki S, Sakakibara N, Goseki R, Konishi G. Flexible Alkylene Bridges as a Tool To Engineer Crystal Distyrylbenzene Structures Enabling Highly Fluorescent Monomeric Emission. Chemistry 2022; 28:e202201884. [PMID: 35817755 PMCID: PMC9544799 DOI: 10.1002/chem.202201884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yoshimichi Shimomura
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku 152-8552 Tokyo Japan
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering Kyushu University 6-1 Kasuga-koen, Kasuga 816-8580 Fukuoka Japan
| | - Shunsuke Sasaki
- Université de Nantes CNRS Institut des Matériaux Jean Rouxel IMN F-44000 Nantes France
| | - Noritaka Sakakibara
- Department of Chemistry Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku 152-8552 Tokyo Japan
| | - Raita Goseki
- Department of Applied Chemistry Kogakuin University Nakano-machi, Hachioji-shi 192-0015 Tokyo Japan
| | - Gen‐ichi Konishi
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku 152-8552 Tokyo Japan
- PRESTO “Element Strategy” Japan Science and Technology Agency (JST) Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
14
|
Maurya GP, Verma D, Sinha A, Brunsveld L, Haridas V. Hydrophobicity Directed Chiral Self‐Assembly and Aggregation‐Induced Emission: Diacetylene‐Cored Pseudopeptide Chiral Dopants. Angew Chem Int Ed Engl 2022; 61:e202209806. [DOI: 10.1002/anie.202209806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Govind P. Maurya
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi- 110016 India
| | - Deepak Verma
- Department of Physics Indian Institute of Technology Delhi Hauz Khas New Delhi- 110016 India
| | - Aloka Sinha
- Department of Physics Indian Institute of Technology Delhi Hauz Khas New Delhi- 110016 India
| | - Luc Brunsveld
- Department of Biomedical Engineering Laboratory of Chemical Biology and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - V. Haridas
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi- 110016 India
| |
Collapse
|
15
|
Huang Y, Zhan C, Yang Y, Wang L, Zhong H, Yu Y, Zhang X, Li C, Jin Y, Zhang G, Zhao R, Zhang D. Tuning Proapoptotic Activity of a Phosphoric‐Acid‐Tethered Tetraphenylethene by Visible‐Light‐Triggered Isomerization and Switchable Protein Interactions for Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202208378. [DOI: 10.1002/anie.202208378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yanyan Huang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Chi Zhan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Yang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Lingna Wang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Huifei Zhong
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Yu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Xi‐Sha Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
16
|
Maurya GP, Verma D, Sinha A, Brunsveld L, Haridas V. Hydrophobicity directed chiral self‐assembly and aggregation induced emission: Diacetylene‐cored pseudopeptide chiral dopants. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Govind P. Maurya
- Indian Institute of Technology Delhi Department of Chemistry Chemistry Hauz Khas 110016 New Delhi INDIA
| | - Deepak Verma
- Indian Institute of Technology Delhi Physics Hauz Khas 110016 New Delhi INDIA
| | - Aloka Sinha
- Indian Institute of Technology Delhi Physics Hauz Khas 110016 New Delhi INDIA
| | - Luc Brunsveld
- Eindhoven University of Technology: Technische Universiteit Eindhoven Chemical Biology 5600 MB Eindhoven 5600 MB Eindhovan NETHERLANDS
| | - V Haridas
- Indian Institute of Technology Chemistry Hauz KhasNew Delhi 110016 New Delhi INDIA
| |
Collapse
|
17
|
Rong S, Shi W, Zhang S, Wang X. Circularly and Linearly Polarized Luminescence from AIE Luminogens Induced by Super‐Aligned Assemblies of Sub‐1 nm Nanowires. Angew Chem Int Ed Engl 2022; 61:e202208349. [DOI: 10.1002/anie.202208349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Shujian Rong
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology Tianjin 300387 China
| | - Simin Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
18
|
Abstract
Super-resolution imaging techniques that overcome the diffraction limit of light have gained wide popularity for visualizing cellular structures with nanometric resolution. Following the pace of hardware developments, the availability of new fluorescent probes with superior properties is becoming ever more important. In this context, fluorescent nanoparticles (NPs) have attracted increasing attention as bright and photostable probes that address many shortcomings of traditional fluorescent probes. The use of NPs for super-resolution imaging is a recent development and this provides the focus for the current review. We give an overview of different super-resolution methods and discuss their demands on the properties of fluorescent NPs. We then review in detail the features, strengths, and weaknesses of each NP class to support these applications and provide examples from their utilization in various biological systems. Moreover, we provide an outlook on the future of the field and opportunities in material science for the development of probes for multiplexed subcellular imaging with nanometric resolution.
Collapse
Affiliation(s)
- Wei Li
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | | | - Bingfu Lei
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Yingliang Liu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
19
|
Huang Y, Zhan C, Yang Y, Wang L, Zhong H, Yu Y, Zhang X, Li C, Jin Y, Zhang G, Zhao R, Zhang D. Tuning Proapoptotic Activity of a Phosphoric‐Acid‐Tethered Tetraphenylethene by Visible‐Light‐Triggered Isomerization and Switchable Protein Interactions for Cancer Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yanyan Huang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Chi Zhan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Yang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Lingna Wang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Huifei Zhong
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Yu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Xi‐Sha Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems CAS Research/Education Center of Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
20
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bin Fang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Yu Shen
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Bo Peng
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Hua Bai
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Limin Wang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Jiaxin Zhang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wenbo Hu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Li Fu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wei Zhang
- Air Force Medical University Teaching and Evaluation Center CHINA
| | - Lin Li
- Nanjing Tech University Institute of Advanced Materials 30 South Puzhu Road 210008 Nanjing CHINA
| | - Wei Huang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| |
Collapse
|
21
|
Sun H, Lang Z, Zhao Y, Zhao X, Qiu T, Hong Q, Wei K, Tan H, Kang Z, Li Y. Copper-Bridged Tetrakis(4-ethynylphenyl)ethene Aggregates with Photo-Regulated 1 O 2 and O 2 .- Generation for Selective Photocatalytic Aerobic Oxidation. Angew Chem Int Ed Engl 2022; 61:e202202914. [PMID: 35543927 DOI: 10.1002/anie.202202914] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 11/07/2022]
Abstract
Active species regulation is a key scientific issue that essentially determines the selectivity and activity of a photocatalyst. Herein, CuI -bridged tetrakis(4-ethynylphenyl)ethene aggregates (T4 EPE-Cu) with photo-regulated 1 O2 and O2 .- generation were demonstrated for selective photocatalytic aerobic oxidation. In this system, transient photovoltage combined with the density functional theory calculations confirmed that Cu-alkynyl was the main oxygen activation site. The adsorbed O2 tends to produce O2 .- because of the potential well effect of Cu-alkynyl under high-energy light excitation. But under low-energy light, O2 tends to produce 1 O2 via resonance energy transfer with Cu-alkynyl. For α-terpinene oxidation, the ratios of 1 O2 products to O2 .- products can be controlled from 1.3 (380 nm) to 10.7 (600 nm). Furthermore, T4 EPE-Cu exhibited ultrahigh photocatalytic performance for Glaser coupling and benzylamine oxidation, with a conversion and selectivity of over 99 %.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Zhongling Lang
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yingnan Zhao
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xinyu Zhao
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Tianyu Qiu
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Qiang Hong
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Kaiqiang Wei
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Huaqiao Tan
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Zhenhui Kang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate, Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
22
|
Dong MJ, Li W, Xiang Q, Tan Y, Xing X, Wu C, Dong H, Zhang X. Engineering Metal-Organic Framework Hybrid AIEgens with Tumor-Activated Accumulation and Emission for the Image-Guided GSH Depletion ROS Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29599-29612. [PMID: 35737456 DOI: 10.1021/acsami.2c05860] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aggregation-induced emission (AIE)-active luminogens (AIEgens) have demonstrated exciting potential for the application in cancer phototheranostics. However, simultaneously achieving tumor-activated bright emission, enhanced reactive oxygen species (ROS) generation, high tumor accumulation, and minimized ROS depletion remains challenging. Here, a metal-organic framework (MOF) hybrid AIEgen theranostic platform is designed, termed A-NUiO@DCDA@ZIF-Cu, composed of an AIEgen-loaded hydrophobic UiO-66 (A-NUiO@DCDA) core and a Cu-doped hydrophilic ZIF-8 (ZIF-Cu) shell. The fluorescence emission and therapeutic ROS activity of AIEgens are restrained during delivery. After uptake by tumor tissues, ZIF-Cu decomposition occurs in response to an acidic tumor microenvironment (TME), and the hydrophobic A-NUiO@DCDA cores self-assemble into large particles, extremely increasing the tumor accumulation of AIEgens. This results in enhanced fluorescence imaging (FLI) and highly improved 1O2 generation ability during photodynamic therapy (PDT). Meanwhile, the released Cu2+ reacts to glutathione (GSH) to generate Cu+, which provides an extra chemodynamic therapy (CDT) function through Fenton-like reactions with overexpressed H2O2, resulting in the GSH depletion-enhanced ROS therapy. As a result of these characteristics, the MOF hybrid AIEgens can selectively kill tumors with excellent efficacy.
Collapse
Affiliation(s)
- Ming-Jie Dong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Weiqun Li
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Qin Xiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Yan Tan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiaotong Xing
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Chaoxiong Wu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Haifeng Dong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xueji Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| |
Collapse
|
23
|
Rong S, Shi W, Zhang S, Wang X. Circularly and Linearly Polarized Luminescence from AIE Luminogens Induced by Super‐aligned Assemblies of Sub‐1 nm Nanowires. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shujian Rong
- Tsinghua University Department of Chemistry Chemistry CHINA
| | - Wenxiong Shi
- Tianjin University of Technology School of Materials Science and Engineering CHINA
| | - Simin Zhang
- Tsinghua University Department of Chemistry Chemistry CHINA
| | - Xun Wang
- Tsinghua University Department of Chemistry Haidian District, Chengfu Road 100084 Beijing CHINA
| |
Collapse
|
24
|
Tang J, Li F, Liu C, Shu J, Yue J, Xu B, Liu X, Zhang K, Jiang W. Attractive benzothiazole-based fluorescence probe for the highly efficient detection of hydrogen peroxide. Anal Chim Acta 2022; 1214:339939. [DOI: 10.1016/j.aca.2022.339939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/19/2022]
|
25
|
Sun H, Lang Z, Zhao Y, Zhao X, Qiu T, Hong Q, Wei K, Tan H, Kang Z, Li Y. Copper‐Bridged Tetrakis(4‐ethynylphenyl)ethene Aggregates with Photo‐Regulated
1
O
2
and O
2
.−
Generation for Selective Photocatalytic Aerobic Oxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huiying Sun
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Zhongling Lang
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Yingnan Zhao
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Xinyu Zhao
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Tianyu Qiu
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Qiang Hong
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
| | - Kaiqiang Wei
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
| | - Huaqiao Tan
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Zhenhui Kang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
- Macao Institute of Materials Science and Engineering Macau University of Science and Technology Taipa 999078 Macau SAR China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| |
Collapse
|
26
|
Fu S, Niu N, Song S, Yan D, Ge J, Li J, Peng Z, Li L, Xiong Y, Wang L, Wang D, Tang BZ. Facile Construction of Dendritic Amphiphiles with Aggregation-Induced Emission Characteristics for Supramolecular Self-Assembly. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuang Fu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Niu Niu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shanliang Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinyin Ge
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiangao Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhengli Peng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lianwei Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yu Xiong
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lei Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City 518172, Guangdong, China
| |
Collapse
|
27
|
Ouyang J, Sun L, Zeng F, Wu S. Biomarker-activatable probes based on smart AIEgens for fluorescence and optoacoustic imaging. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214438] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Wang L, Nagashima Y, Abekura M, Uekusa H, Konishi G, Tanaka K. Rhodium‐Catalyzed Intermolecular Cycloaromatization Route to Cycloparaphenylenes that Exhibit Aggregation‐Induced Emission. Chemistry 2022; 28:e202200064. [DOI: 10.1002/chem.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Li‐Hsiang Wang
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Masato Abekura
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hidehiro Uekusa
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Gen‐ichi Konishi
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
29
|
Li X, Zhang X, Zhang F, Luo X, Luo H. Construction of Pyridine Ring Systems by Mn(OAc)
2
‐Promoted Formal Dehydrative Dehydroaromatizing [4+2] Cycloaddition of Enamides with Maleimides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaolan Li
- Department of Chemistry & Chemical Engineering Gannan Normal University Ganzhou Jiangxi, 341000 People's Republic of China
| | - Xiuqi Zhang
- Department of Chemistry & Chemical Engineering Gannan Normal University Ganzhou Jiangxi, 341000 People's Republic of China
| | - Fukuan Zhang
- Department of Chemistry & Chemical Engineering Gannan Normal University Ganzhou Jiangxi, 341000 People's Republic of China
| | - Xuzhong Luo
- Department of Chemistry & Chemical Engineering Gannan Normal University Ganzhou Jiangxi, 341000 People's Republic of China
| | - Haiqing Luo
- Department of Chemistry & Chemical Engineering Gannan Normal University Ganzhou Jiangxi, 341000 People's Republic of China
| |
Collapse
|
30
|
Zhu Y, Lai H, Guo H, Peng D, Han L, Gu Y, Wei Z, Zhao D, Zheng N, Hu D, Xi L, He F, Tian L. Side‐Chain‐Tuned Molecular Packing Allows Concurrently Boosted Photoacoustic Imaging and NIR‐II Fluorescence. Angew Chem Int Ed Engl 2022; 61:e202117433. [DOI: 10.1002/anie.202117433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Yulin Zhu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology, Nangang District Harbin 150001 P. R. China
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Hanjian Lai
- School of Chemistry and Chemical Engineering Harbin Institute of Technology, Nangang District Harbin 150001 P. R. China
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Heng Guo
- Department of Biomedical Engineering Southern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Dinglu Peng
- Department of Biomedical Engineering Southern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Liang Han
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Ying Gu
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Zixiang Wei
- Department of Materials Science and Engineering Southern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Duokai Zhao
- School of Materials Science and Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Nan Zheng
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Dehua Hu
- School of Materials Science and Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Lei Xi
- Department of Biomedical Engineering Southern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Feng He
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering Southern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
31
|
Sun L, Ouyang J, Zeng F, Wu S. An AIEgen-based oral-administration nanosystem for detection and therapy of ulcerative colitis via 3D-MSOT/NIR-II fluorescent imaging and inhibiting NLRP3 inflammasome. Biomaterials 2022; 283:121468. [DOI: 10.1016/j.biomaterials.2022.121468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022]
|
32
|
Wu P, Zhou L, Zhen Z, Xia S, Yu L. Doped organic charge-transfer cocrystal with tunable fluorescence of wide band emission. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Philippe C, Coste M, Bretonnière Y, Lemiègre L, Ulrich S, Trolez Y. Quadruple Functionalization of a Tetraphenylethylene Aromatic Scaffold with Ynamides or Tetracyanobutadienes: Synthesis and Optical Properties. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Clotilde Philippe
- ENSCR: Ecole nationale superieure de chimie de Rennes ISCR UMR6226 FRANCE
| | - Maëva Coste
- CNRS: Centre National de la Recherche Scientifique IBMM UMR5247 FRANCE
| | - Yann Bretonnière
- Ecole normale superieure de Lyon Laboratoire de Chimie UMR5182 FRANCE
| | - Loïc Lemiègre
- ENSCR: Ecole nationale superieure de chimie de Rennes ISCR UMR6226 FRANCE
| | - Sebastien Ulrich
- CNRS: Centre National de la Recherche Scientifique Institut des Biomolécules Max Mousseron (IBMM) Pôle Chimie Balard RechercheIBMM - UMR 52471919, route de Mende 34293 MONTPELLIER FRANCE
| | - Yann Trolez
- ENSCR: Ecole nationale superieure de chimie de Rennes ISCR UMR6226 FRANCE
| |
Collapse
|
34
|
Multiple Light-Activated Photodynamic Therapy of Tetraphenylethylene Derivative with AIE Characteristics for Hepatocellular Carcinoma via Dual-Organelles Targeting. Pharmaceutics 2022; 14:pharmaceutics14020459. [PMID: 35214196 PMCID: PMC8877525 DOI: 10.3390/pharmaceutics14020459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Photodynamic therapy (PDT) has emerged as a promising locoregional therapy of hepatocellular carcinoma (HCC). The utilization of luminogens with aggregation-induced emission (AIE) characteristics provides a new opportunity to design functional photosensitizers (PS). PSs targeting the critical organelles that are susceptible to reactive oxygen species damage is a promising strategy to enhance the effectiveness of PDT. In this paper, a new PS, 1-[2-hydroxyethyl]-4-[4-(1,2,2-triphenylvinyl)styryl]pyridinium bromide (TPE-Py-OH) of tetraphenylethylene derivative with AIE feature was designed and synthesized for PDT. The TPE-Py-OH can not only simultaneously target lipid droplets and mitochondria, but also stay in cells for a long period (more than 7 days). Taking advantage of the long retention ability of TPE-Py-OH in tumor, the PDT effect of TPE-Py-OH can be activated through multiple irradiations after one injection, which provides a specific multiple light-activated PDT effect. We believe that this AIE-active PS will be promising for the tracking and photodynamic ablation of HCC with sustained effectiveness.
Collapse
|
35
|
Zhang Z, Lieu T, Wang X, Daugulis O, Miljanic O. Synthesis and Optical Properties of Fluorinated Tetraphenylethylenes. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhenglin Zhang
- University of Houston Department of Chemistry UNITED STATES
| | - Thien Lieu
- University of Houston Department of Chemistry UNITED STATES
| | - Xiqu Wang
- University of Houston Department of Chemistry UNITED STATES
| | - Olafs Daugulis
- University of Houston Department of Chemistry UNITED STATES
| | - Ognjen Miljanic
- University of Houston Department of Chemistry 112 Fleming Building 77204-5003 Houston UNITED STATES
| |
Collapse
|
36
|
Wen D, Zhang X, Ding L, Wen H, Liu W, Zhang C, Wang B, Li L, Diao H. Folic acid functionalized aggregation-induced emission nanoparticles for tumor cell targeted imaging and photodynamic therapy. RSC Adv 2022; 12:4484-4489. [PMID: 35425471 PMCID: PMC8981163 DOI: 10.1039/d1ra09173e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/29/2022] [Indexed: 12/21/2022] Open
Abstract
Recently, molecules with aggregation-induced luminescence (AIE) characteristics have received more and more attention due to the fluorescence of traditional dyes being easily quenched in the aggregated state. AIE molecules have significant advantages, such as excellent light stability, bright fluorescence, high contrast, and large Stokes shift. These characteristics have aroused wide interest of researchers and opened up new applications in many fields, especially in the field of biological applications. However, AIE molecules or their aggregates have certain limitations in multifunctional biological research due to their low specific targeting ability, poor biocompatibility, and poor stability in physiological body fluids. In order to overcome these problems, a novel nanoparticle, FFM1, was fabricated and characterized. FFM1 displayed good water solubility, biocompatibility, and AIE emission properties. It could target HeLa cells specifically by recognizing their folate receptor. Reactive oxygen triggered by light irradiation induced tumor cell apoptosis. Summarily, FFM1 displayed excellent capacity in target imaging and photodynamic killing of HeLa cells. It has shown potential application value in targeted diagnosis and photodynamic therapy of tumors, and has important guiding significance for the treatment of malignant tumors. It paves a way for the development of a novel strategy for tumor theranostics.
Collapse
Affiliation(s)
- Danning Wen
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Xueyun Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Lei Ding
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Huan Wen
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Wen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 P. R. China
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Chengwu Zhang
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Bin Wang
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Lihong Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 P. R. China
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Haipeng Diao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 P. R. China
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 P. R. China
| |
Collapse
|
37
|
Zhu Y, Lai H, Guo H, Peng D, Han L, Gu Y, Wei Z, Zhao D, Zheng N, Hu D, Xi L, He F, Tian L. Side‐Chain‐Tuned Molecular Packing Allows Concurrently Boosted Photoacoustic Imaging and NIR‐II Fluorescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yulin Zhu
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Hanjian Lai
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Heng Guo
- Southern University of Science and Technology Department of Biomedical Engineering CHINA
| | - Dinglu Peng
- Southern University of Science and Technology Department of Biomedical Engineering CHINA
| | - Liang Han
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Ying Gu
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Zixiang Wei
- Southern University of Science and Technology Department of Materials Science and Engineering CHINA
| | - Duokai Zhao
- South China University of Technology School of Materials Science and Engineering CHINA
| | - Nan Zheng
- South China University of Technology State Key Laboratory of Luminescent Materials and Devices CHINA
| | - Dehua Hu
- South China University of Technology School of Materials Science and Engineering CHINA
| | - Lei Xi
- Southern University of Science and Technology Department of Biomedical Engineering CHINA
| | - Feng He
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Leilei Tian
- Southern University of Science and Technology Materials Science and Engineering 1088 Xueyuan Blvd.Nanshan District 518055 Shenzhen CHINA
| |
Collapse
|
38
|
Xu Y, Tuo W, Yang L, Sun Y, Li C, Chen X, Yang W, Yang G, Stang PJ, Sun Y. Design of a Metallacycle-Based Supramolecular Photosensitizer for In Vivo Image-Guided Photodynamic Inactivation of Bacteria. Angew Chem Int Ed Engl 2022; 61:e202110048. [PMID: 34806264 DOI: 10.1002/anie.202110048] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 12/22/2022]
Abstract
Bacterial infection is one of the greatest threats to public health. In vivo real-time monitoring and effective treatment of infected sites through non-invasive techniques, remain a challenge. Herein, we designed a PtII metallacycle-based supramolecular photosensitizer through the host-guest interaction between a pillar[5]arene-modified metallacycle and 1-butyl-4-[4-(diphenylamino)styryl]pyridinium. Leveraging the aggregation-induced emission supramolecular photosensitizer, we improved fluorescence performance and antimicrobial photodynamic inactivation. In vivo studies revealed that it displayed precise fluorescence tracking of S. aureus-infected sites, and in situ performed image-guided efficient PDI of S. aureus without noticeable side effects. These results demonstrated that metallacycle combined with host-guest chemistry could provide a paradigm for the development of powerful photosensitizers for biomedicine.
Collapse
Affiliation(s)
- Yuling Xu
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Wei Tuo
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Liang Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Sun
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Chonglu Li
- Guangxi Key laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing, 210009, China
| | - Wenchao Yang
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Guangfu Yang
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Peter J Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
39
|
Xu Y, Tuo W, Yang L, Sun Y, Li C, Chen X, Yang W, Yang G, Stang PJ, Sun Y. Design of a Metallacycle‐Based Supramolecular Photosensitizer for In Vivo Image‐Guided Photodynamic Inactivation of Bacteria. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yuling Xu
- Key Laboratory of Pesticides and Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health College of Chemistry Central China Normal University Wuhan 430079 China
| | - Wei Tuo
- Department of Chemistry University of Utah 315 South 1400 East, Room 2020 Salt Lake City UT 84112 USA
| | - Liang Yang
- Department of Radiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China
| | - Yan Sun
- Department of Chemistry University of Utah 315 South 1400 East, Room 2020 Salt Lake City UT 84112 USA
| | - Chonglu Li
- Guangxi Key laboratory of High-Incidence-Tumor Prevention & Treatment Guangxi Medical University Nanning 530021 China
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing University of Technology Nanjing 210009 China
| | - Wenchao Yang
- Key Laboratory of Pesticides and Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health College of Chemistry Central China Normal University Wuhan 430079 China
| | - Guangfu Yang
- Key Laboratory of Pesticides and Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health College of Chemistry Central China Normal University Wuhan 430079 China
| | - Peter J. Stang
- Department of Chemistry University of Utah 315 South 1400 East, Room 2020 Salt Lake City UT 84112 USA
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health College of Chemistry Central China Normal University Wuhan 430079 China
| |
Collapse
|
40
|
Thakuri A, Banerjee M, Chatterjee A. Sulfonate‐Functionalized AIEgens: Strategic Approaches Beyond Water Solubility for Sensing and Imaging Applications. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ankit Thakuri
- Department of Chemistry BITS-Pilani, KK Birla Goa Campus NH 17B, Bypass Road, Zuarinagar Sancoale Goa 403726 India
| | - Mainak Banerjee
- Department of Chemistry BITS-Pilani, KK Birla Goa Campus NH 17B, Bypass Road, Zuarinagar Sancoale Goa 403726 India
| | - Amrita Chatterjee
- Department of Chemistry BITS-Pilani, KK Birla Goa Campus NH 17B, Bypass Road, Zuarinagar Sancoale Goa 403726 India
| |
Collapse
|
41
|
Zhang F, Xie H, Guo B, Zhu C, Xu J. AIE-active macromolecules: designs, performances, and applications. Polym Chem 2022. [DOI: 10.1039/d1py01167g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aggregation-induced emission (AIE) macromolecules as emerging luminescent materials gained increasing attention owing to their good processability, high brightness, wide functionality, and smart responsiveness, with great potential in many fields.
Collapse
Affiliation(s)
- Fei Zhang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Hui Xie
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technolog, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Caizhen Zhu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
42
|
Liu P, Chen S, Zhao W, Wang Q, Wu S, Xu L, Bai D. Novel Pyrazine-Bridged D-A-D Type Charge Neutral Probe for Membrane Permeable Long-Term Live Cell Imaging. Front Chem 2021; 9:782827. [PMID: 34926403 PMCID: PMC8672416 DOI: 10.3389/fchem.2021.782827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
A novel donor-acceptor-donor (D-A-D) type compound containing pyrazine as the acceptor and triphenylamine as the donor has been designed and synthesized. The photophysical properties and biocompatibility of this probe, namely (OMeTPA)2-Pyr for live cell imaging were systematically investigated, with observed large Stokes shifts, high photostability, and low cytotoxicity. Furthermore, we demonstrated that (OMeTPA)2-Pyr could permeate live cell membranes for labeling. The proposed mechanism of this probe was the binding and shafting through membrane integral transport proteins by electrostatic and hydrophobic interactions. These salient and novel findings can facilitate the strategic design of new pyrazine-fused charge-neutral molecular platforms as fluorescent probes, for long-term in situ dynamic monitoring in live cells.
Collapse
Affiliation(s)
- Pei Liu
- Department of Chemistry and Chemical Engineering, School of Natural Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Suna Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, China
| | - Wenxuan Zhao
- School of Material Science and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Qiutang Wang
- School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Shuqi Wu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Dan Bai
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Northwestern Polytechnical University, Xi'an, China.,Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Xi'an, China.,Research Institute of Xi'an Jiaotong University (Zhejiang), Hangzhou, China
| |
Collapse
|
43
|
Wang L, Huang Y, Yu Y, Zhong H, Xiao H, Zhang G, Zhang D. Photosensitizer with High Efficiency Generated in Cells via Light-Induced Self-Oligomerization of 4,6-Dibromothieno[3,4-b]thiophene Compound Entailing a Triphenyl Phosphonium Group. Adv Healthc Mater 2021; 10:e2100896. [PMID: 34494390 DOI: 10.1002/adhm.202100896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/20/2021] [Indexed: 11/08/2022]
Abstract
Photodynamic therapy (PDT) has emerged as an attractive alternative in cancer therapy, but therapeutic effects suffer from low photosensitizing efficiency and poor retention of photosensitizes in cancer cells. This paper reports the photosensitizers which show absorption and emission in the long-wavelength region and high photosensitizing efficiency can be formed in situ in cells from 4,6-dibromothieno[3,4-b]thiophene derivative (TT-5-P) after white light irradiation. The self-oligomerization of TT-5-P is uptaken in cells upon light irradiation-induced cell apoptosis simultaneously and efficiently. In addition, the formation of oligomers (TT-5-Ps) enhances the retention time in cells remarkably, which is advantageous for boosting the photodynamic therapy efficiency. Moreover, the selectivity toward tumor cells of TT-5-P can be improved obviously via the formation of complex of TT-5-P with albumin. This in situ photoinduced self-oligomerization strategy can be utilized to design effective biomaterials for long-term imaging and improved therapy.
Collapse
Affiliation(s)
- Lingna Wang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids Analytical Chemistry for Living Biosystems and State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids Analytical Chemistry for Living Biosystems and State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yingjie Yu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids Analytical Chemistry for Living Biosystems and State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Huifei Zhong
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids Analytical Chemistry for Living Biosystems and State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids Analytical Chemistry for Living Biosystems and State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids Analytical Chemistry for Living Biosystems and State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids Analytical Chemistry for Living Biosystems and State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
44
|
Pei Y, Wang Z, Wang C. Recent Progress in Polymeric AIE-Active Drug Delivery Systems: Design and Application. Mol Pharm 2021; 18:3951-3965. [PMID: 34585933 DOI: 10.1021/acs.molpharmaceut.1c00601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aggregation-induced emission (AIE) provides a new opportunity to overcome the drawbacks of traditional aggregation-induced quenching of chromophores. The applications of AIE-active fluorophores have spread across various fields. In particular, the employment of AIEgens in drug delivery systems (DDSs) can achieve imaging-guided therapy and pharmacodynamic monitoring. As a result, polymeric AIE-active DDSs are attracting increasing attention due to their obvious advantages, including easy fabrication and tunable optical properties by molecular design. Additionally, the design of polymeric AIE-active DDSs is a promising method for cancer therapy, antibacterial treatment, and pharmacodynamic monitoring, which indeed helps improve the effectiveness of related disease treatments and confirms its potential social importance. Here, we summarize the current available polymeric AIE-active DDSs from design to applications. In the design section, we introduce synthetic strategies and structures of AIE-active polymers, as well as responsive strategies for specific drug delivery. In the application section, typical polymeric AIE-active DDSs used for cancer therapy, bacterial treatment, and drug delivery monitoring are summarized with selected examples to elaborate on their wide applications.
Collapse
Affiliation(s)
- Yang Pei
- School of History, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Ziyu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Cheng Wang
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, People's Republic of China.,School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
45
|
Tang Y, Zhang D, Zhang Y, Liu Y, Cai L, Plaster E, Zheng J. Fundamentals and exploration of aggregation-induced emission molecules for amyloid protein aggregation. J Mater Chem B 2021; 10:2280-2295. [PMID: 34724699 DOI: 10.1039/d1tb01942b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The past decade has witnessed the growing interest and advances in aggregation-induced emission (AIE) molecules as driven by their unique fluorescence/optical properties in particular sensing applications including biomolecule sensing/detection, environmental/health monitoring, cell imaging/tracking, and disease analysis/diagnosis. In sharp contrast to conventional aggregation-caused quenching (ACQ) fluorophores, AIE molecules possess intrinsic advantages for the study of disease-related protein aggregates, but such studies are still at an infant stage with much less scientific exploration. This outlook mainly aims to provide the first systematic summary of AIE-based molecules for amyloid protein aggregates associated with neurodegenerative diseases. Despite a limited number of studies on AIE-amyloid systems, we will survey recent and important developments of AIE molecules for different amyloid protein aggregates of Aβ (associated with Alzheimer's disease), insulin (associated with type 2 diabetes), (α-syn, associated with Parkinson's disease), and HEWL (associated with familial lysozyme systemic amyloidosis) with a particular focus on the working principle and structural design of four types of AIE-based molecules. Finally, we will provide our views on current challenges and future directions in this emerging area. Our goal is to inspire more researchers and investment in this emerging but less explored subject, so as to advance our fundamental understanding and practical design/usages of AIE molecules for disease-related protein aggregates.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Lirong Cai
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Eleanor Plaster
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| |
Collapse
|
46
|
Liu YY, Zhang X, Li K, Peng QC, Qin YJ, Hou HW, Zang SQ, Tang BZ. Restriction of Intramolecular Vibration in Aggregation‐Induced Emission Luminogens: Applications in Multifunctional Luminescent Metal–Organic Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuan Yuan Liu
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Xin Zhang
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Kai Li
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Qiu Chen Peng
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Yu Jing Qin
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Hong Wei Hou
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Shuang Quan Zang
- Green Catalysis Center College of Chemistry Zhengzhou University Science Road 100# Zhengzhou 450001 China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| |
Collapse
|
47
|
Biesen L, May L, Nirmalananthan‐Budau N, Hoffmann K, Resch‐Genger U, Müller TJJ. Communication of Bichromophore Emission upon Aggregation - Aroyl-S,N-ketene Acetals as Multifunctional Sensor Merocyanines. Chemistry 2021; 27:13426-13434. [PMID: 34170045 PMCID: PMC8518837 DOI: 10.1002/chem.202102052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 12/13/2022]
Abstract
Aroyl-S,N-ketene acetal-based bichromophores can be readily synthesized in a consecutive three-component synthesis in good to excellent yields by condensation of aroyl chlorides and an N-(p-bromobenzyl) 2-methyl benzothiazolium salt followed by a Suzuki coupling, yielding a library of 31 bichromophoric fluorophores with substitution pattern-tunable emission properties. Varying both chromophores enables different communication pathways between the chromophores, exploiting aggregation-induced emission (AIE) and energy transfer (ET) properties, and thus, furnishing aggregation-based fluorescence switches. Possible applications range from fluorometric analysis of alcoholic beverages to pH sensors.
Collapse
Affiliation(s)
- Lukas Biesen
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Lars May
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Nithiya Nirmalananthan‐Budau
- Division BiophotonicsBundesanstalt für Materialforschung und -prüfung (BAM), Department 1Richard-Willstätter-Straße 1112489BerlinGermany
| | - Katrin Hoffmann
- Division BiophotonicsBundesanstalt für Materialforschung und -prüfung (BAM), Department 1Richard-Willstätter-Straße 1112489BerlinGermany
| | - Ute Resch‐Genger
- Division BiophotonicsBundesanstalt für Materialforschung und -prüfung (BAM), Department 1Richard-Willstätter-Straße 1112489BerlinGermany
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| |
Collapse
|
48
|
Wu P, Zhou L, Xia S, Yu L. Synthesis of luminescent cocrystals based on fluoranthene and the analysis of weak interactions and photophysical properties. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2021; 77:551-560. [PMID: 34482299 DOI: 10.1107/s2053229621008652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 11/10/2022]
Abstract
A series of luminescent cocrystals with fluoranthene (C16H10) as the fluorophore and benzene-1,2,4,5-tetracarbonitrile (TCNB, C10H2N4), 2,3,5,6-tetrafluorobenzene-1,4-dicarbonitrile (TFP, C8F4N2) and 1,2,3,4,5,6,7,8-octafluoronaphthalene (OFN, C10F8) as the coformers was designed and synthesized. Structure analysis revealed that these layered structures were due to charge transfer, π-π interactions and hydrogen bonding. Density functional theory (DFT) calculations show that fluoranthene-TCNB and fluoranthene-TFP have charge-transfer properties, while fluoranthene-OFN does not, indicating that fluoranthene-OFN has arene-perfluoroarene (AP) interactions, which was also demonstrated by spectroscopic analysis, which shows that the photophysical properties of luminescent materials can be tuned by forming cocrystals. These results all prove that utilizing supramolecular cocrystals to develop new fluorescent materials is an effective strategy, which has much potential in optoelectronic applications.
Collapse
Affiliation(s)
- Pengfei Wu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Long Zhou
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Shuwei Xia
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| |
Collapse
|
49
|
Liu X, Xiao M, Xue K, Li M, Liu D, Wang Y, Yang X, Hu Y, Kwok RTK, Qin A, Zhu C, Lam JWY, Tang BZ. Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic Biopatterning. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaolin Liu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Mingzhao Li
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Dongming Liu
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Yong Wang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Xinzhe Yang
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Yubing Hu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Ryan T. K. Kwok
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Anjun Qin
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
- AIE Institute, Guangzhou Development District, Huangpu Guangzhou 510530 China
- Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials China
| |
Collapse
|
50
|
Ong SY, Zhang C, Dong X, Yao SQ. Recent Advances in Polymeric Nanoparticles for Enhanced Fluorescence and Photoacoustic Imaging. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sing Yee Ong
- Department of Chemistry National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
- National University of Singapore Graduate School (Integrative Sciences and Engineering Programme, ISEP) National University of Singapore University Hall, Tan Chin Tuan Wing, 21 Lower Kent Ridge Road, #04-02 Singapore 119077 Singapore
| | - Changyu Zhang
- Department of Chemistry National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Xiao Dong
- Department of Chemistry National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Shao Q. Yao
- Department of Chemistry National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
- National University of Singapore Graduate School (Integrative Sciences and Engineering Programme, ISEP) National University of Singapore University Hall, Tan Chin Tuan Wing, 21 Lower Kent Ridge Road, #04-02 Singapore 119077 Singapore
| |
Collapse
|