1
|
Wang X, Xiao G. Recent Advances in Chemical Synthesis of Structural Domains of Lipopolysaccharides from the Commensal Gut-Associated Microbiota. Chembiochem 2023; 24:e202300552. [PMID: 37731010 DOI: 10.1002/cbic.202300552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
Lipopolysaccharides from the commensal gut-associated microbiota are interesting biomolecules for the treatment of various inflammatory diseases. Different from pathogenic lipopolysaccharides, commensal lipopolysaccharides have distinct chemical structures and mediate beneficial homeostasis with the immune system of the host. However, the accessibility issues of homogenous and pure commensal lipopolysaccharides hampered the in-depth studies of their functions. In this concept article, we highlight the recent synthesis of lipopolysaccharides from gut-associated lymphoid-tissue-resident Alcaligenes faecalis and Bacteroides vulgatus, which hopes to inspire the more efforts devoting to these fantastic biomolecules.
Collapse
Affiliation(s)
- Xiufang Wang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming, 650214, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|
2
|
Hu C, Wu S, He F, Cai D, Xu Z, Ma W, Liu Y, Wei B, Li T, Ding K. Convergent Synthesis and Anti-Pancreatic Cancer Cell Growth Activity of a Highly Branched Heptadecasaccharide from Carthamus tinctorius. Angew Chem Int Ed Engl 2022; 61:e202202554. [PMID: 35641432 DOI: 10.1002/anie.202202554] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 11/11/2022]
Abstract
Bioactive polysaccharides from natural resources target various biological processes and are increasingly used as potential target molecules for drug development. However, the accessibility of branched and long complex polysaccharide active domains with well-defined structures remains a major challenge. Herein we describe an efficient first total synthesis of a highly branched heptadecasaccharide moiety of the native bioactive galectin-3-targeting polysaccharide from Carthamus tinctorius L. as well as shorter fragments of the heptadecasaccharide. The key feature of the approach is that a photo-assisted convergent [6+4+7] one-pot coupling strategy enables rapid assembly of the heptadecasaccharide, whereby a photoremovable o-nitrobenzyl protecting group is used to generate the corresponding acceptor for glycosylation in situ upon ultraviolet radiation. Biological activity tests suggest that the heptadecasaccharide can target galectin-3 and inhibit pancreatic cancer cell growth.
Collapse
Affiliation(s)
- Chaoyu Hu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.,Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shengjie Wu
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fei He
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Deqin Cai
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhuojia Xu
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenjing Ma
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yating Liu
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bangguo Wei
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Tiehai Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kan Ding
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China
| |
Collapse
|
3
|
Hu C, Wu S, He F, Cai D, Xu Z, Ma W, Liu Y, Wei B, Li T, Ding K. Convergent Synthesis and Anti‐Pancreatic Cancer Cell Growth Activity of a Highly Branched Heptadecasaccharide from Carthamus tinctorius. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chaoyu Hu
- Fudan University Department of Medicinal Chemistry, School of Pharmacy CHINA
| | - Shengjie Wu
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Carbohydrate-Based Drug Research Center CHINA
| | - Fei He
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Carbohydrate-Based Drug Research Center CHINA
| | - Deqin Cai
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Carbohydrate-Based Drug Research Center CHINA
| | - Zhuojia Xu
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Carbohydrate-Based Drug Research Center CHINA
| | - Wenjing Ma
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Carbohydrate-Based Drug Research Center CHINA
| | - Yating Liu
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Carbohydrate-Based Drug Research Center CHINA
| | - Bangguo Wei
- Fudan University Department of Medicinal Chemistry, School of Pharmacy CHINA
| | - Tiehai Li
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Carbohydrate-Based Drug Research Center CHINA
| | - Kan Ding
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Glycochemistry and Glycobiology Lab 555 Zu Chong Zhi Road 201203 Shanghai CHINA
| |
Collapse
|
4
|
Zhang Y, He H, Chen Z, Huang Y, Xiang G, Li P, Yang X, Lu G, Xiao G. Merging Reagent Modulation and Remote Anchimeric Assistance for Glycosylation: Highly Stereoselective Synthesis of α‐Glycans up to a 30‐mer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Guisheng Xiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Penghua Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Xingkuan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Gang Lu
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Jinan Shandong 250100 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| |
Collapse
|
5
|
Zhang Y, He H, Chen Z, Huang Y, Xiang G, Li P, Yang X, Lu G, Xiao G. Merging Reagent Modulation and Remote Anchimeric Assistance for Glycosylation: Highly Stereoselective Synthesis of α-Glycans up to a 30-mer. Angew Chem Int Ed Engl 2021; 60:12597-12606. [PMID: 33763930 DOI: 10.1002/anie.202103826] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/12/2022]
Abstract
The efficient synthesis of long, branched, and complex carbohydrates containing multiple 1,2-cis glycosidic linkages is a long-standing challenge. Here, we report a merging reagent modulation and 6-O-levulinoyl remote anchimeric assistance glycosylation strategy, which is successfully applied to the first highly stereoselective synthesis of the branched Dendrobium Huoshanense glycans and the linear Longan glycans containing up to 30 contiguous 1,2-cis glucosidic bonds. DFT calculations shed light on the origin of the much higher stereoselectivities of 1,2-cis glucosylation with 6-O-levulinoyl group than 6-O-acetyl or 6-O-benzoyl groups. Orthogonal one-pot glycosylation strategy based on glycosyl ortho-alkynylbenzoates and ortho-(1-phenylvinyl)benzoates has been demonstrated in the efficient synthesis of complex glycans, precluding such issues as aglycon transfer inherent to orthogonal one-pot synthesis based on thioglycosides.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Guisheng Xiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Penghua Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Xingkuan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Gang Lu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|