1
|
Lou XY, Zhang K, Bai Y, Zhang S, Li Y, Yang YW. Self-Assembled Nanohelixes Driven by Host-Guest Interactions and Metal Coordination. Angew Chem Int Ed Engl 2024:e202414611. [PMID: 39162253 DOI: 10.1002/anie.202414611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/21/2024]
Abstract
Helical nanostructures fabricated via the self-assembly of artificial motifs have been a captivating subject because of their structural aesthetics and multiple functionalities. Herein, we report the facile construction of a self-assembled nanohelix (NH) by leveraging an achiral aggregation-induced emission (AIE) luminogen (G) and pillar[5]arene (H), driven by host-guest interactions and metal coordination. Inspired by the "sergeants and soldiers" effect and "majority rule" principle, the host-guest complexation between G and H is employed to fixate the twisted conformation of G for the generation of "contortion sites", which further induced the emergence of helicity as the 1D assemblies are formed via Ag(I) coordination and hexagonally packed into nano-sized fibers. The strategy has proved feasible in both homogeneous and heterogeneous syntheses. Along with the formation of NH, boosted luminescence and enhanced productivity of reactive oxygen species (ROS) are afforded because of the efficient restriction on G, indicating the concurrent regulation of NH's morphology and photophysical properties by supramolecular assembly. In addition, NH also exhibits the capacity for bacteria imaging and photodynamic antibacterial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Xin-Yue Lou
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Kun Zhang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yujie Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, 5333 Xi'an Street, Changchun, 130062, China
| | - Siyuan Zhang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yuanyuan Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, 5333 Xi'an Street, Changchun, 130062, China
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| |
Collapse
|
2
|
Shi Y, Li C, Di J, Xue Y, Jia Y, Duan J, Hu X, Tian Y, Li Y, Sun C, Zhang N, Xiong Y, Jin T, Chen P. Polycationic Open-Shell Cyclophanes: Synthesis of Electron-Rich Chiral Macrocycles, and Redox-Dependent Electronic States. Angew Chem Int Ed Engl 2024; 63:e202402800. [PMID: 38411404 DOI: 10.1002/anie.202402800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
π-Conjugated chiral nanorings with intriguing electronic structures and chiroptical properties have attracted considerable interests in synthetic chemistry and materials science. We present the design principles to access new chiral macrocycles (1 and 2) that are essentially built on the key components of main-group electron-donating carbazolyl moieties or the π-expanded aza[7]helicenes. Both macrocycles show the unique molecular conformations with a (quasi) figure-of-eight topology as a result of the conjugation patterns of 2,2',7,7'-spirobifluorenyl in 1 and triarylamine-coupled aza[7]helicene-based building blocks in 2. This electronic nature of redox-active, carbazole-rich backbones enabled these macrocycles to be readily oxidized chemically and electrochemically, leading to the sequential production of a series of positively charged polycationic open-shell cyclophanes. Their redox-dependent electronic states of the resulting multispin polyradicals have been characterized by VT-ESR, UV/Vis-NIR absorption and spectroelectrochemical measurements. The singlet (ΔES-T=-1.29 kcal mol-1) and a nearly degenerate singlet-triplet ground state (ΔES-T(calcd)=-0.15 kcal mol-1 and ΔES-T(exp)=0.01 kcal mol-1) were proved for diradical dications 12+2⋅ and 22+2⋅, respectively. Our work provides an experimental proof for the construction of electron-donating new chiral nanorings, and more importantly for highly charged polyradicals with potential applications in chirospintronics and organic conductors.
Collapse
Affiliation(s)
- Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yuting Xue
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xiaoyu Hu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yu Tian
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yanqiu Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Cuiping Sun
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Niu Zhang
- Analysis and Testing Centre, Beijing Institute of Technology, 102488, Beijing, China
| | - Yan Xiong
- Analysis and Testing Centre, Beijing Institute of Technology, 102488, Beijing, China
| | - Tianyun Jin
- Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography University of California, San Diego La Jolla, 92093, USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| |
Collapse
|
3
|
Wu JR, Wu G, Li D, Yang YW. Macrocycle-Based Crystalline Supramolecular Assemblies Built with Intermolecular Charge-Transfer Interactions. Angew Chem Int Ed Engl 2023; 62:e202218142. [PMID: 36651562 DOI: 10.1002/anie.202218142] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
Synthetic macrocycles have served as principal tools for supramolecular chemistry, have greatly extended the scope of organic charge transfer (CT) complexes, and have proved to be of great practical value in the solid state during the past few years. In this Minireview, we summarize the research progress on the macrocycle-based crystalline supramolecular assemblies primarily driven by intermolecular CT interactions (a.k.a. macrocycle-based crystalline CT assemblies, MCCAs for short), which are classified by their donor-acceptor (D-A) constituent elements, including simplex macrocyclic hosts, heterogeneous macrocyclic hosts, and host-guest D-A pairs. Particular attention will be focused on their diverse functions and applications, as well as the underlying CT mechanisms from the perspective of crystal engineering. Finally, the remaining challenges and prospects are outlined.
Collapse
Affiliation(s)
- Jia-Rui Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Gengxin Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Dongxia Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
4
|
Liu G, Zhang W, Xiao Y, Cao J, Liang Y, Liu G, Zhou L, Gong J, Wang J, Wang Q. Dimerized Nitrogen-Annulated Perylene Synthesized from 1,6-Diazecine as Chiral Emitter. Chemistry 2023; 29:e202203550. [PMID: 36720699 DOI: 10.1002/chem.202203550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
In this work, nitrogen-annulated perylene (NP) was dimerized into one framework connected by two nitrogen atoms, generating the target molecule of DNP-DA. Owing to the substructure of 1,6-diazecine ten-membered ring, DNP-DA illustrates helical chirality with moderate dissymmetry factor, elevated molecular levels, expanded conjugation and supramolecular interactions with acceptors etc. Notably, DNP-DA represents a limited example of nitrogen-perylene based CPL emitter with glum around 6×10-3 . Intrigued by the facile fabrication via a simple amination-cross coupling sequence and other above advancing features, this work demonstrates the potential generality of utilizing 1,6-diazecine as a chiral unit to build CPL-active materials.
Collapse
Affiliation(s)
- Guiru Liu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Wenhao Zhang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Yao Xiao
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Jing Cao
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Yamei Liang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Guanghua Liu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Laiyun Zhou
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Jianye Gong
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Jianguo Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Qing Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| |
Collapse
|
5
|
Pecorari D, Giuliani E, Mazzanti A, Stagni S, Fiorini V, Vigarani G, Zinna F, Pescitelli G, Mancinelli M. Synthesis and Stereodynamic and Emission Properties of Dissymmetric Bis-Aryl Carbazole Boranes and Identification of a CPL-Active B-C Atropisomeric Compound. J Org Chem 2023; 88:871-881. [PMID: 36599041 PMCID: PMC9872089 DOI: 10.1021/acs.joc.2c02209] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We synthesized bis-aryl carbazole borane derivatives having emissive properties and axial chirality. The resolution of a thermally stable atropisomeric pair (compound 1b), due to a B-C chiral axis, was achieved by chiral stationary-phase high-performance liquid chromatography (CSP-HPLC). Complete photophysical properties of all compounds were measured and simulated by time-dependent density functional theory (TD-DFT) calculations of the complete fluorescence cycle, and circularly polarized luminescence spectra were obtained for the atropisomers of compound 1b, whose absolute configuration was derived using a TD-DFT simulation of the electronic circular dichroism (ECD) spectra.
Collapse
Affiliation(s)
- Daniel Pecorari
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Emanuele Giuliani
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Andrea Mazzanti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Stefano Stagni
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Valentina Fiorini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Giulia Vigarani
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Francesco Zinna
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Gennaro Pescitelli
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Michele Mancinelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy,
| |
Collapse
|
6
|
Shi Y, Zeng Y, Kucheryavy P, Yin X, Zhang K, Meng G, Chen J, Zhu Q, Wang N, Zheng X, Jäkle F, Chen P. Dynamic B/N Lewis Pairs: Insights into the Structural Variations and Photochromism via Light-Induced Fluorescence to Phosphorescence Switching. Angew Chem Int Ed Engl 2022; 61:e202213615. [PMID: 36287039 DOI: 10.1002/anie.202213615] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Ultralong afterglow emissions due to room-temperature phosphorescence (RTP) are of paramount importance in the advancement of smart sensors, bioimaging and light-emitting devices. We herein present an efficient approach to achieve rarely accessible phosphorescence of heavy atom-free organoboranes via photochemical switching of sterically tunable fluorescent Lewis pairs (LPs). LPs are widely applied in and well-known for their outstanding performance in catalysis and supramolecular soft materials but have not thus far been exploited to develop photo-responsive RTP materials. The intramolecular LP M1BNM not only shows a dynamic response to thermal treatment due to reversible N→B coordination but crystals of M1BNM also undergo rapid photochromic switching. As a result, unusual emission switching from short-lived fluorescence to long-lived phosphorescence (rad-M1BNM, τRTP =232 ms) is observed. The reported discoveries in the field of Lewis pairs chemistry offer important insights into their structural dynamics, while also pointing to new opportunities for photoactive materials with implications for fast responsive detectors.
Collapse
Affiliation(s)
- Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Yi Zeng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Pavel Kucheryavy
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Guoyun Meng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Jinfa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Qian Zhu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| |
Collapse
|
7
|
Shang W, Zhu X, Jiang Y, Cui J, Liu K, Li T, Liu M. Self‐Assembly of Macrocyclic Triangles into Helicity‐Opposite Nanotwists by Competitive Planar over Point Chirality. Angew Chem Int Ed Engl 2022; 61:e202210604. [DOI: 10.1002/anie.202210604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Weili Shang
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Yuqian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Beijing 100190 China
| | - Jie Cui
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Kaiang Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Minghua Liu
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
8
|
Tian G, Chen JF, Zhang K, Shi Y, Li C, Yin X, Liu K, Chen P. Applying the B/N Lewis Pair Approach to Access Fusion-Expanded Binaphthyl-Based Chiral Analogues. Inorg Chem 2022; 61:15315-15319. [PMID: 36135458 DOI: 10.1021/acs.inorgchem.2c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We herein describe the synthesis of two axially chiral systems (HBN and BBN) by the incorporation of B centers into binaphthyl derivatives (HPy and BPy). Heteroatom-doped chiral polycyclic aromatic hydrocarbons were thus formed by fusion of the azaboroles to binaphthyls with the formation of B-N dative bonds. The resulting B-N Lewis pairs that serve as attractive fluorophores enabled modulation of the chiroptical properties both in solution and in the solid state.
Collapse
Affiliation(s)
- Guoqing Tian
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Jin-Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Kanglei Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| |
Collapse
|
9
|
Kato K, Kurakake Y, Ohtani S, Fa S, Gon M, Tanaka K, Ogoshi T. Discrete Macrocycles with Fixed Chirality and Two Distinct Sides: Dipole‐Dependent Chiroptical Response. Angew Chem Int Ed Engl 2022; 61:e202209222. [DOI: 10.1002/anie.202209222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Yuta Kurakake
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Masayuki Gon
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto, 615-8510 Japan
- WPI Nano Life Science Institute Kanazawa University Kakuma-machi Kanazawa, 920-1192 Japan
| |
Collapse
|
10
|
Shang W, Zhu X, Jiang Y, Cui J, Liu K, Li T, Liu M. Self‐Assembly of Macrocyclic Triangles into Helicity‐Opposite Nanotwists by Competitive Planar over Point Chirality. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weili Shang
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Xuefeng Zhu
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics CHINA
| | - Yuqian Jiang
- National Center for Nanoscience and Nanotechnology: National Center for Nanoscience and Technology Key laboratory of Nanosystem and Hierarchical Fabrication CHINA
| | - Jie Cui
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) CHINA
| | - Kaiang Liu
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) CHINA
| | - Tiesheng Li
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Minghua Liu
- Institute of Chemistry, CAS Laboratory of Colloid and Interface Scie Zhong Guancun 100080 Beijing CHINA
| |
Collapse
|
11
|
Kato K, Kurakake Y, Ohtani S, Fa S, Gon M, Tanaka K, Ogoshi T. Discrete Macrocycles with Fixed Chirality and Two Distinct Sides: Dipole‐Dependent Chiroptical Response. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kenichi Kato
- Kyoto University Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering KatsuraNishikyo-ku 615-8510 Kyoto JAPAN
| | - Yuta Kurakake
- Kyoto University: Kyoto Daigaku Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering JAPAN
| | - Shunsuke Ohtani
- Kyoto University: Kyoto Daigaku Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering JAPAN
| | - Shixin Fa
- Kyoto University: Kyoto Daigaku Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering JAPAN
| | - Masayuki Gon
- Kyoto University: Kyoto Daigaku Department of Polymer Chemistry, Graduate School of Engineering JAPAN
| | - Kazuo Tanaka
- Kyoto University: Kyoto Daigaku Department of Polymer Chemistry, Graduate School of Engineering JAPAN
| | - Tomoki Ogoshi
- Kyoto University: Kyoto Daigaku Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering JAPAN
| |
Collapse
|
12
|
Vincent SP, Chen W. Copillar[5]arene Chemistry: Synthesis and Applications. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1738369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractResearch on pillar[n]arenes has witnessed a very quick expansion. This emerging class of functionalized macrocyclic oligoarenes not only offers host–guest properties due to the presence of the central cavity, but also presents a wide variety of covalent functionalization possibilities. This short review focuses on copillararenes, a subfamily of pillar[n]arenes. In copillararenes, at least one of the hydroquinone units bears different functional groups compared to the others. After having defined the particular features of copillararenes, this short review compares the different synthetic strategies allowing their construction. Some key applications and future perspectives are also described. 1 Introduction2 General Features of Pillar[5]arenes3 Synthesis of Functionalized Copillar[4+1]arenes4 Concluding Remarks
Collapse
Affiliation(s)
| | - Wenzhang Chen
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University
- Department of Chemistry, UNamur, NARILIS
| |
Collapse
|
13
|
Li P, Shimoyama D, Zhang N, Jia Y, Hu G, Li C, Yin X, Wang N, Jäkle F, Chen P. A New Platform of B/N‐Doped Cyclophanes: Access to a π‐Conjugated Block‐Type B
3
N
3
Macrocycle with Strong Dipole Moment and Unique Optoelectronic Properties. Angew Chem Int Ed Engl 2022; 61:e202200612. [DOI: 10.1002/anie.202200612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Pengfei Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Daisuke Shimoyama
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Niu Zhang
- Analysis & Testing Centers Beijing Institute of Technology of China Beijing 102488 China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Guofei Hu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Frieder Jäkle
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| |
Collapse
|
14
|
Li Q, Wu Y, Cao J, Liu Y, Wang Z, Zhu H, Zhang H, Huang F. Pillararene-Induced Intramolecular Through-Space Charge Transfer and Single-Molecule White-Light Emission. Angew Chem Int Ed Engl 2022; 61:e202202381. [PMID: 35234348 DOI: 10.1002/anie.202202381] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 12/15/2022]
Abstract
The fabrication of single-molecule white-light emission (SMWLE) materials has become a highly studied topic in recent years and through-space charge transfer (TSCT) is emerging as an important concept in this field. However, the preparation of ideal TSCT-based SMWLE materials is still a big challenge. Herein, we report a bifunctional pillar[5]arene (TPCN-P5-TPA) with a linear donor-spacer-acceptor structure and aggregation-induced emission (AIE) property. The bulky pillar[5]arene between the donor and acceptor induces a twisted conformation and a non-conjugated structure, resulting in intramolecular TSCT. In addition, the AIE feature and pillar[5]arene cavity endow TPCN-P5-TPA with responsiveness to viscosity and polar guests, by which the TSCT emission is triggered. The combination of blue locally-excited state emission and yellow TSCT emission of TPCN-P5-TPA generates SMWLE. Therefore, we provide a new and versatile strategy for the construction of TSCT-based SMWLE materials.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yitao Wu
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiajun Cao
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yang Liu
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zeju Wang
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Haoke Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China.,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
15
|
Li P, Shimoyama D, Zhang N, Jia Y, Hu G, Li C, Yin X, Wang N, Jäkle F, Chen P. A New Platform of B/N‐Doped Cyclophanes: Access to a π‐Conjugated Block‐Type B
3
N
3
Macrocycle with Strong Dipole Moment and Unique Optoelectronic Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pengfei Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Daisuke Shimoyama
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Niu Zhang
- Analysis & Testing Centers Beijing Institute of Technology of China Beijing 102488 China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Guofei Hu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Frieder Jäkle
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| |
Collapse
|
16
|
Li Q, Wu Y, Cao J, Liu Y, Wang Z, Zhu H, Zhang H, Huang F. Pillararene‐Induced Intramolecular Through‐Space Charge Transfer and Single‐Molecule White‐Light Emission. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qi Li
- State Key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yitao Wu
- State Key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Jiajun Cao
- State Key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yang Liu
- State Key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Zeju Wang
- State Key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Haoke Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
17
|
Zeng H, Liu P, Xing H, Huang F. Symmetrically Tetra‐functionalized Pillar[6]arenes Prepared by Fragment Coupling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hong Zeng
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Peiren Liu
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Hao Xing
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Feihe Huang
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
| |
Collapse
|
18
|
Zeng H, Liu P, Xing H, Huang F. Symmetrically Tetra-functionalized Pillar[6]arenes Prepared by Fragment Coupling. Angew Chem Int Ed Engl 2021; 61:e202115823. [PMID: 34962061 DOI: 10.1002/anie.202115823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 11/07/2022]
Abstract
Due to the highly symmetrical structures generated from one-pot syntheses, the partial functionalization of macrocycles is usually beset with low yields and onerous purifications of the target multifunctional macrocycles. To improve this circumstance, taking pillar[6]arenes as an example, a two-step fragment coupling method is developed for synthesizing symmetrically tetra-functionalized pillar[6]arenes, namely X-pillar[6]arenes. This method is simple and versatile, which makes hetero-fragment coupling and pre-functionalization available. Nine new macrocycles and a pillar[6]arene-based cage are prepared. In addition, one of the newly synthesized macrocycles, COOEtEtXP[6] , exhibits a strong cyan luminescence in the solid state under irradiation by 365 nm UV light. This emission originates from intramolecular through-space conjugation. Meanwhile, formation of a supramolecular polymer by multiple non-covalent intra/intermolecular interactions help rigidify the structure and make COOEtEtXP[6] an efficient solid-state emitter. It is believed that this fragment coupling can also be used to realize the multi-functionalization of other macrocycles.
Collapse
Affiliation(s)
- Hong Zeng
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Peiren Liu
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Hao Xing
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Feihe Huang
- Zhejiang University, Department of Chemistry, Faculty of Sciences, 310027, Hangzhou, CHINA
| |
Collapse
|
19
|
Hasegawa M, Nojima Y, Mazaki Y. Circularly Polarized Luminescence in Chiral π‐Conjugated Macrocycles. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Masashi Hasegawa
- Department of Chemistry Graduate School of Science Kitasato University Sagamihara, Kanagawa 252-0373 Japan
| | - Yuki Nojima
- Department of Chemistry Graduate School of Science Kitasato University Sagamihara, Kanagawa 252-0373 Japan
| | - Yasuhiro Mazaki
- Department of Chemistry Graduate School of Science Kitasato University Sagamihara, Kanagawa 252-0373 Japan
| |
Collapse
|
20
|
Shimoyama D, Baser-Kirazli N, Lalancette RA, Jäkle F. Electrochromic Polycationic Organoboronium Macrocycles with Multiple Redox States. Angew Chem Int Ed Engl 2021; 60:17942-17946. [PMID: 34111328 DOI: 10.1002/anie.202105852] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Indexed: 12/14/2022]
Abstract
Polycationic macrocycles are attractive as they display unique molecular switching capabilities arising from their redox properties. Although diverse polycationic macrocycles have been developed, those based on cationic boron systems remain very limited. We present herein the development of novel polycationic macrocycles by introducing organoboronium moieties into a conjugated organoboron macrocyclic framework. These macrocycles consist of four bipyridylboronium units that are connected by fluorene and either electron-deficient arylborane or electron-rich arylamine moieties. Electrochemical studies reveal that the macrocycles undergo reversible multi-step redox processes with transfer of up to 10 electrons. Switchable electrochromic behavior is demonstrated via spectroelectrochemical studies and the observed color changes are rationalized by correlation with computed electronic transitions using DFT methods.
Collapse
Affiliation(s)
- Daisuke Shimoyama
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Nurcan Baser-Kirazli
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ, 07102, USA
| |
Collapse
|
21
|
Shimoyama D, Baser‐Kirazli N, Lalancette RA, Jäkle F. Electrochromic Polycationic Organoboronium Macrocycles with Multiple Redox States. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daisuke Shimoyama
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Nurcan Baser‐Kirazli
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Roger A. Lalancette
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
22
|
Cao J, Zhu H, Shangguan L, Liu Y, Liu P, Li Q, Wu Y, Huang F. A pillar[5]arene-based 3D polymer network for efficient iodine capture in aqueous solution. Polym Chem 2021. [DOI: 10.1039/d1py00535a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A pillar[5]arene-based 3D polymer network is constructed. It possesses good stability, recyclability and high efficiency in iodine capture in aqueous solution.
Collapse
Affiliation(s)
- Jiajun Cao
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| | - Liqing Shangguan
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| | - Yuezhou Liu
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| | - Peiren Liu
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| | - Qi Li
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| | - Yitao Wu
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering
- Key Laboratory of Excited-State Materials of Zhejiang Province
- Stoddart Institute of Molecular Science
- Department of Chemistry
- Zhejiang University
| |
Collapse
|
23
|
Du K, Demay-Drouhard P, Samanta K, Li S, Thikekar TU, Wang H, Guo M, van Lagen B, Zuilhof H, Sue ACH. Stereochemical Inversion of Rim-Differentiated Pillar[5]arene Molecular Swings. J Org Chem 2020; 85:11368-11374. [PMID: 32820630 PMCID: PMC7498154 DOI: 10.1021/acs.joc.0c01464] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
To
investigate the dynamic stereochemical inversion behavior of
pillar[5]arenes (P[5]s) in more detail, we synthesized a series of
novel rim-differentiated P[5]s with various substituents and examined
their rapid rotations by variable-temperature NMR (203–298
K). These studies revealed for the first time the barrier of “methyl-through-the-annulus”
rotation (ΔG‡ = 47.4 kJ·mol–1 in acetone) and indicated that for rim-differentiated
P[5]s with two types of alkyl substituents, the smaller rim typically
determines the rate of rotation. However, substituents with terminal
C=C or C≡C bonds give rise to lower inversion barriers,
presumably as a result of attractive π–π interactions
in the transition state. Finally, data on a rim-differentiated penta-methyl-penta-propargyl
P[5] exhibited the complexity of the overall inversion dynamics.
Collapse
Affiliation(s)
- Ke Du
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Paul Demay-Drouhard
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6703 WE Wageningen, The Netherlands
| | - Kushal Samanta
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6703 WE Wageningen, The Netherlands
| | - Shunshun Li
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Tushar Ulhas Thikekar
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Haiying Wang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Barend van Lagen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6703 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6703 WE Wageningen, The Netherlands.,Department of Chemical and Materials Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Andrew C-H Sue
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| |
Collapse
|
24
|
Cao Z, Wang B, Zhu F, Hao A, Xing P. Solvent-Processed Circularly Polarized Luminescence in Light-Harvesting Coassemblies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34470-34478. [PMID: 32691580 DOI: 10.1021/acsami.0c10559] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a kinetic factor, solvent polarity functioning in regulating/enhancing chiroptical properties of supramolecular chiral self-assemblies including handedness, dissymmetry factor, and luminescent color has not been realized. Here, we introduce a delicate solvent control over self-assembly pathways of a dynamer into four soft matters comprising gel, liposome, helix, and particles respectively, where a fluorescent dye as an acceptor was loaded to allow efficient circularly polarized light harvesting. Though no apparent chirality transfer from chiral assemblies to acceptors occurred at ground state based on the circular dichroism spectra, efficient energy transfer at photoexcited state was observed, demonstrating considerable dependence on solvent polarity and constitution. As the acceptor orientated without chiral sense in coassemblies, circularly polarized light migration from donor to acceptor is reasonably expected. In apolar decane, thixotropic gels with left-handed circularly polarized luminescence were given, and luminescent colors could be controlled from green to red (510-600 nm) via adjusting molar fraction of acceptor, affording a high dissymmetry factor at 1 × 10-2 order of magnitude. The crucial role of ordered structures in the emergence of circularly polarized luminescence was also validated. The present work provides a solvent-processed manner to rationally regulate the dissymmetry factor, colors, and handedness by feat of circularly polarized light harvesting and migration, avoiding the tedious construction of a building block and enantiomer library.
Collapse
Affiliation(s)
- Zhaozhen Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Bo Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Feng Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|