1
|
Lei H, Song S, Pan N, Zou H, Wang X, Tuo X. Redox-active phytic acid-based self-assembled hybrid material for enhanced uranium adsorption from highly acidic solution. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133227. [PMID: 38091800 DOI: 10.1016/j.jhazmat.2023.133227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 02/08/2024]
Abstract
Achieving efficient uranium adsorption from highly acidic wastewater is still considered challenging. Here, an inorganic-organic hybridized self-assembly material (rPFE-10) with redox activity was constructed by phytic acid (PA), ethylenediamine (EDA), and Fe(II) via a facile one-pot route, and further applied for U(VI) removal. In the static adsorption experiment, rPFE-10 achieved the maximum U(VI) adsorption capacity of 717.1 mg/g at the optimal pH of 3.5. It also performed preeminently in a highly acidic condition of pH = 1.0, with the highest adsorption capacity of 551.2 mg/g and an equilibrium time of 30 min. Moreover, rPFE-10 exhibited a pH-responsive adsorption selectivity for U(VI) and An-Ln (S(U(VI)) and S(An-Ln)), which increased to 69 % and 94 % respectively as pH decreased from 3.0 to 1.0. Additionally, the spectral analysis revealed a reconstruction mechanism induced by multiple synergistic adsorption, in which U(VI) exchange with EDA+/2+ and Fe2+/3+ and earned suitable coordination geometry and ligand environment to coordinate with PA (mainly P-OH), while partial U(VI) is reduced by Fe(II) in framework. This work not only highlights the facile strategy for enhanced U(VI) retention in highly acidic solution, but expands the potential application of supramolecular self-assembly material in treatment of nuclear wastewater.
Collapse
Affiliation(s)
- Hao Lei
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, China
| | - Shilong Song
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China; Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ning Pan
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hao Zou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoqiang Wang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Xianguo Tuo
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, China; School of Computer Science and Engineering, Sichuan University of Science and Engineering, Zigong, China.
| |
Collapse
|
2
|
Berseneva AA, Klepov VV, Pal K, Seeley K, Koury D, Schaeperkoetter J, Wright JT, Misture ST, Kanatzidis MG, Wolverton C, Gelis AV, Zur Loye HC. Transuranium Sulfide via the Boron Chalcogen Mixture Method and Reversible Water Uptake in the NaCu TS 3 Family. J Am Chem Soc 2022; 144:13773-13786. [PMID: 35861788 DOI: 10.1021/jacs.2c04783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The behavior of 5f electrons in soft ligand environments makes actinides, and especially transuranium chalcogenides, an intriguing class of materials for fundamental studies. Due to the affinity of actinides for oxygen, however, it is a challenge to synthesize actinide chalcogenides using non-metallic reagents. Using the boron chalcogen mixture method, we achieved the synthesis of the transuranium sulfide NaCuNpS3 starting from the oxide reagent, NpO2. Via the same synthetic route, the isostructural composition of NaCuUS3 was synthesized and the material contrasted with NaCuNpS3. Single crystals of the U-analogue, NaCuUS3, were found to undergo an unexpected reversible hydration process to form NaCuUS3·xH2O (x ≈ 1.5). A large combination of techniques was used to fully characterize the structure, hydration process, and electronic structures, specifically a combination of single crystal, powder, high temperature powder X-ray diffraction, extended X-ray absorption fine structure, infrared, and inductively coupled plasma spectroscopies, thermogravimetric analysis, and density functional theory calculations. The outcome of these analyses enabled us to determine the composition of NaCuUS3·xH2O and obtain a structural model that demonstrated the retention of the local structure within the [CuUS3]- layers throughout the hydration-dehydration process. Band structure, density of states, and Bader charge calculations for NaCuUS3, NaCuUS3·xH2O, and NaCuNpS3 along with X-ray absorption near edge structure, UV-vis-NIR, and work function measurements on ACuUS3 (A = Na, K, and Rb) and NaCuUS3·xH2O samples were carried out to demonstrate that electronic properties arise from the [CuTS3]- layers and show surprisingly little dependence on the interlayer distance.
Collapse
Affiliation(s)
- Anna A Berseneva
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Vladislav V Klepov
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Koushik Pal
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kelly Seeley
- Department of Chemistry and Biochemistry, Radiochemistry Program, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Daniel Koury
- Department of Chemistry and Biochemistry, Radiochemistry Program, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Joseph Schaeperkoetter
- Kazuo Inamori School of Engineering, Alfred University, Alfred, New York 14802, United States
| | - Joshua T Wright
- Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Scott T Misture
- Kazuo Inamori School of Engineering, Alfred University, Alfred, New York 14802, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Chris Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Artem V Gelis
- Department of Chemistry and Biochemistry, Radiochemistry Program, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Hans-Conrad Zur Loye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|