1
|
D'Atri V, Imiołek M, Quinn C, Finny A, Lauber M, Fekete S, Guillarme D. Size exclusion chromatography of biopharmaceutical products: From current practices for proteins to emerging trends for viral vectors, nucleic acids and lipid nanoparticles. J Chromatogr A 2024; 1722:464862. [PMID: 38581978 DOI: 10.1016/j.chroma.2024.464862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
The 21st century has been particularly productive for the biopharmaceutical industry, with the introduction of several classes of innovative therapeutics, such as monoclonal antibodies and related compounds, gene therapy products, and RNA-based modalities. All these new molecules are susceptible to aggregation and fragmentation, which necessitates a size variant analysis for their comprehensive characterization. Size exclusion chromatography (SEC) is one of the reference techniques that can be applied. The analytical techniques for mAbs are now well established and some of them are now emerging for the newer modalities. In this context, the objective of this review article is: i) to provide a short historical background on SEC, ii) to suggest some clear guidelines on the selection of packing material and mobile phase for successful method development in modern SEC; and iii) to highlight recent advances in SEC, such as the use of narrow-bore and micro-bore columns, ultra-wide pore columns, and low-adsorption column hardware. Some important innovations, such as recycling SEC, the coupling of SEC with mass spectrometry, and the use of alternative detectors such as charge detection mass spectrometry and mass photometry are also described. In addition, this review discusses the use of SEC in multidimensional setups and shows some of the most recent advances at the preparative scale. In the third part of the article, the possibility of SEC for the characterization of new modalities is also reviewed. The final objective of this review is to provide a clear summary of opportunities and limitations of SEC for the analysis of different biopharmaceutical products.
Collapse
Affiliation(s)
- Valentina D'Atri
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland
| | | | | | - Abraham Finny
- Waters Corporation, Wyatt Technology, Santa Barbara, CA, USA
| | - Matthew Lauber
- Waters Corporation, Wyatt Technology, Santa Barbara, CA, USA
| | | | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland.
| |
Collapse
|
2
|
Castel J, Delaux S, Hernandez-Alba O, Cianférani S. Recent advances in structural mass spectrometry methods in the context of biosimilarity assessment: from sequence heterogeneities to higher order structures. J Pharm Biomed Anal 2023; 236:115696. [PMID: 37713983 DOI: 10.1016/j.jpba.2023.115696] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Biotherapeutics and their biosimilar versions have been flourishing in the biopharmaceutical market for several years. Structural and functional characterization is needed to achieve analytical biosimilarity through the assessment of critical quality attributes as required by regulatory authorities. The role of analytical strategies, particularly mass spectrometry-based methods, is pivotal to gathering valuable information for the in-depth characterization of biotherapeutics and biosimilarity assessment. Structural mass spectrometry methods (native MS, HDX-MS, top-down MS, etc.) provide information ranging from primary sequence assessment to higher order structure evaluation. This review focuses on recent developments and applications in structural mass spectrometry for biotherapeutic and biosimilar characterization.
Collapse
Affiliation(s)
- Jérôme Castel
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Delaux
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France.
| |
Collapse
|
3
|
Zhou X, Wang R, Wan Z, Zhang P, Wang S. Multiplexed Protein Detection and Parallel Binding Kinetics Analysis with Label-Free Digital Single-Molecule Counting. Anal Chem 2023; 95:1541-1548. [PMID: 36595491 PMCID: PMC10316747 DOI: 10.1021/acs.analchem.2c04582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Multiplexed protein detection is critical for improving the drug and biomarker screening efficiency. Here, we show that multiplexed protein detection and parallel protein interaction analysis can be realized by evanescent scattering microscopy (ESM). ESM enables binding kinetics measurement with label-free digital single-molecule counting. We implemented an automatic single-molecule counting strategy with high temporal resolution to precisely determine the binding time, which improves the counting efficiency and accuracy. We show that digital single-molecule counting can recognize proteins with different molecular weights, thus making it possible to monitor the protein binding processes in the solution by real-time tracking of the numbers of free and bound proteins landing on the sensor surface. Furthermore, we show that this strategy can simultaneously analyze the kinetics of two different protein interaction processes on the surface and in the solution. This work may pave a way to investigate complicated protein interactions, such as the competition of biomarker-antibody binding in biofluids with biomarker-protein binding on the cellular membrane.
Collapse
Affiliation(s)
- Xinyu Zhou
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Rui Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
| | - Zijian Wan
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
- School of Electrical, Energy and Computer Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Pengfei Zhang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
4
|
Marciano S, Dey D, Listov D, Fleishman SJ, Sonn-Segev A, Mertens H, Busch F, Kim Y, Harvey SR, Wysocki VH, Schreiber G. Protein quaternary structures in solution are a mixture of multiple forms. Chem Sci 2022; 13:11680-11695. [PMID: 36320402 PMCID: PMC9555727 DOI: 10.1039/d2sc02794a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Over half the proteins in the E. coli cytoplasm form homo or hetero-oligomeric structures. Experimentally determined structures are often considered in determining a protein's oligomeric state, but static structures miss the dynamic equilibrium between different quaternary forms. The problem is exacerbated in homo-oligomers, where the oligomeric states are challenging to characterize. Here, we re-evaluated the oligomeric state of 17 different bacterial proteins across a broad range of protein concentrations and solutions by native mass spectrometry (MS), mass photometry (MP), size exclusion chromatography (SEC), and small-angle X-ray scattering (SAXS), finding that most exhibit several oligomeric states. Surprisingly, some proteins did not show mass-action driven equilibrium between the oligomeric states. For approximately half the proteins, the predicted oligomeric forms described in publicly available databases underestimated the complexity of protein quaternary structures in solution. Conversely, AlphaFold multimer provided an accurate description of the potential multimeric states for most proteins, suggesting that it could help resolve uncertainties on the solution state of many proteins.
Collapse
Affiliation(s)
- Shir Marciano
- Department of Biomolecular Sciences, Weizmann Institute of Science Rehovot Israel
| | - Debabrata Dey
- Department of Biomolecular Sciences, Weizmann Institute of Science Rehovot Israel
| | - Dina Listov
- Department of Biomolecular Sciences, Weizmann Institute of Science Rehovot Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science Rehovot Israel
| | - Adar Sonn-Segev
- Refeyn Ltd 1 Electric Avenue, Ferry Hinksey Road Oxford OX2 0BY UK
| | - Haydyn Mertens
- Hamburg Outstation, European Molecular Biology Laboratory Notkestrasse 85 Hamburg 22607 Germany
| | - Florian Busch
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University Columbus OH 43210 USA
| | - Yongseok Kim
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University Columbus OH 43210 USA
| | - Sophie R Harvey
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University Columbus OH 43210 USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University Columbus OH 43210 USA
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
5
|
Wang Q, Lei Y, Cui Y, Lin J, Huang W, He Y. Thermal Stability and Kinetics of Single I 2@ZIF-8 Particles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22643-22649. [PMID: 35512825 DOI: 10.1021/acsami.2c04922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thermogravimetric analysis (TGA) is a key material characterization method for studying the thermal stability and thermochemical process. However, the common TGA for bulk samples lacks sufficient spatial information, which blurs the intrinsic thermal decomposition characteristic and limits the understanding of the structure-performance relationship. Here, we report a dark-field microscope (DFM) method for studying thermal desorption process of I2 from I2-loaded zeolitic imidazolate framework-8 (I2@ZIF-8). Because of the high spatial resolution, DFM enables the imaging and tracking of the local mass loss of I2 in single I2@ZIF-8 particles at different reaction temperatures. We obtain from the DFM images the single-particle thermogravimetric and differential thermogravimetric curves to evaluate the inherent thermal stability of single I2@ZIF-8 particles. We also find the heterogeneous thermal decomposition property among different I2@ZIF-8 particles. Furthermore, we demonstrate the capacity of DFM to quantitatively determine thermal kinetics parameters such as the diffusion coefficient and activation energy of I2 in individual and multiple ZIF-8 particles. These useful results are essential for developing high-efficient porous adsorbents for the capture of I2.
Collapse
Affiliation(s)
- Qianxi Wang
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yuting Lei
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yunyi Cui
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Jingruolan Lin
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Wei Huang
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yi He
- National Collaborative Innovation Center for Nuclear Waste and Environmental Safety, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
6
|
Lai SH, Tamara S, Heck AJ. Single-particle mass analysis of intact ribosomes by mass photometry and Orbitrap-based charge detection mass spectrometry. iScience 2021; 24:103211. [PMID: 34712917 PMCID: PMC8529500 DOI: 10.1016/j.isci.2021.103211] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/04/2021] [Accepted: 09/29/2021] [Indexed: 12/28/2022] Open
Abstract
Standard methods for mass analysis measure ensembles of thousand to millions of molecules. This approach enables analysis of monodisperse recombinant proteins, whereas some heterogeneous protein assemblies pose a significant challenge, whereby co-occurring stoichiometries, sub-complexes, and modifications hamper analysis using native mass spectrometry. To tackle the challenges posed by mass heterogeneity, single-particle methods may come to the rescue. Recently, two such approaches have been introduced, namely, mass photometry (MP) and Orbitrap-based charge detection mass spectrometry (CDMS). Both methods assess masses of individual molecules, albeit adhering to distinct physical principles. To evaluate these methods side by side, we analyzed a set of ribosomal particles, representing polydisperse ribonucleoprotein assemblies in the MDa range. MP and CDMS provide accurate masses for intact ribosomes and enable quantitative analysis of concomitant distinct particles within each ribosome sample. Here, we discuss pros and cons of these single-molecule techniques, also in the context of other techniques used for mass analysis.
Collapse
Affiliation(s)
- Szu-Hsueh Lai
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
7
|
Engwerda AHJ, Southworth J, Lebedeva MA, Scanes RJH, Kukura P, Fletcher SP. Coupled Metabolic Cycles Allow Out‐of‐Equilibrium Autopoietic Vesicle Replication. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Josh Southworth
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Maria A. Lebedeva
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Robert J. H. Scanes
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Philipp Kukura
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Stephen P. Fletcher
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| |
Collapse
|
8
|
Engwerda AHJ, Southworth J, Lebedeva MA, Scanes RJH, Kukura P, Fletcher SP. Coupled Metabolic Cycles Allow Out-of-Equilibrium Autopoietic Vesicle Replication. Angew Chem Int Ed Engl 2020; 59:20361-20366. [PMID: 32706135 PMCID: PMC7692917 DOI: 10.1002/anie.202007302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Indexed: 12/11/2022]
Abstract
We report chemically fuelled out-of-equilibrium self-replicating vesicles based on surfactant formation. We studied the vesicles' autocatalytic formation using UPLC to determine monomer concentration and interferometric scattering microscopy at the nanoparticle level. Unlike related reports of chemically fuelled self-replicating micelles, our vesicular system was too stable to surfactant degradation to be maintained out of equilibrium. The introduction of a catalyst, which introduces a second catalytic cycle into the metabolic network, was used to close the first cycle. This shows how coupled catalytic cycles can create a metabolic network that allows the creation and perseverance of fuel-driven, out-of-equilibrium self-replicating vesicles.
Collapse
Affiliation(s)
| | - Josh Southworth
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordUK
| | - Maria A. Lebedeva
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordUK
| | | | - Philipp Kukura
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordUK
| | | |
Collapse
|
9
|
Huang Q, Li N, Zhang H, Che C, Sun F, Xiong Y, Canady TD, Cunningham BT. Critical Review: digital resolution biomolecular sensing for diagnostics and life science research. LAB ON A CHIP 2020; 20:2816-2840. [PMID: 32700698 PMCID: PMC7485136 DOI: 10.1039/d0lc00506a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
One of the frontiers in the field of biosensors is the ability to quantify specific target molecules with enough precision to count individual units in a test sample, and to observe the characteristics of individual biomolecular interactions. Technologies that enable observation of molecules with "digital precision" have applications for in vitro diagnostics with ultra-sensitive limits of detection, characterization of biomolecular binding kinetics with a greater degree of precision, and gaining deeper insights into biological processes through quantification of molecules in complex specimens that would otherwise be unobservable. In this review, we seek to capture the current state-of-the-art in the field of digital resolution biosensing. We describe the capabilities of commercially available technology platforms, as well as capabilities that have been described in published literature. We highlight approaches that utilize enzymatic amplification, nanoparticle tags, chemical tags, as well as label-free biosensing methods.
Collapse
Affiliation(s)
- Qinglan Huang
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, IL 61801
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Nantao Li
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, IL 61801
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Hanyuan Zhang
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Congnyu Che
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Fu Sun
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, IL 61801
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, IL 61801
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Taylor D. Canady
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Brian T. Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, IL 61801
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Illinois Cancer Center, University of Illinois at Urbana-Champaign Urbana, IL 61801
| |
Collapse
|