1
|
Malashin I, Daibagya D, Tynchenko V, Nelyub V, Borodulin A, Gantimurov A, Selyukov A, Ambrozevich S, Smirnov M, Ovchinnikov O. Modeling Temperature-Dependent Photoluminescence Dynamics of Colloidal CdS Quantum Dots Using Long Short-Term Memory (LSTM) Networks. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5056. [PMID: 39459761 PMCID: PMC11509628 DOI: 10.3390/ma17205056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
This study addresses the challenge of modeling temperature-dependent photoluminescence (PL) in CdS colloidal quantum dots (QD), where PL properties fluctuate with temperature, complicating traditional modeling approaches. The objective is to develop a predictive model capable of accurately capturing these variations using Long Short-Term Memory (LSTM) networks, which are well suited for managing temporal dependencies in time-series data. The methodology involved training the LSTM model on experimental time-series data of PL intensity and temperature. Through numerical simulation, the model's performance was assessed. Results demonstrated that the LSTM-based model effectively predicted PL trends under different temperature conditions. This approach could be applied in optoelectronics and quantum dot-based sensors for enhanced forecasting capabilities.
Collapse
Affiliation(s)
- Ivan Malashin
- Center for Continuing Education, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Daniil Daibagya
- Center for Continuing Education, Bauman Moscow State Technical University, 105005 Moscow, Russia
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vadim Tynchenko
- Center for Continuing Education, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Vladimir Nelyub
- Center for Continuing Education, Bauman Moscow State Technical University, 105005 Moscow, Russia
- Scientific Department, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Aleksei Borodulin
- Center for Continuing Education, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Andrei Gantimurov
- Center for Continuing Education, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Alexandr Selyukov
- Center for Continuing Education, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Sergey Ambrozevich
- Center for Continuing Education, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Mikhail Smirnov
- Department of Physics, Voronezh State University, 394018 Voronezh, Russia
| | - Oleg Ovchinnikov
- Department of Physics, Voronezh State University, 394018 Voronezh, Russia
| |
Collapse
|
2
|
Shin J, Choi M, Shim D, Ziehl TJ, Park S, Cho E, Zhang P, Lee H, Kang J, Jeong S. Unveiling the Nanocluster Conversion Pathway for Highly Monodisperse InAs Colloidal Quantum Dots. JACS AU 2024; 4:1097-1106. [PMID: 38559718 PMCID: PMC10976596 DOI: 10.1021/jacsau.3c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 04/04/2024]
Abstract
Colloidal quantum dots (CQDs) have garnered significant attention in nanoscience and technology, with a particular emphasis on achieving high monodispersity in their synthesis. Recent advances in understanding the chemistry of reaction intermediates such as magic-sized nanoclusters (MSC) have paved the way for innovative synthetic strategies. Notably, monodisperse CQDs of various compositions, including indium phosphide, indium arsenide, and cadmium chalcogenide, have been successfully prepared using nanocluster intermediates as single-source precursors. Still, the early stage conversion chemistry of these nanoclusters preceding CQD formation has not been fully unveiled yet. Herein, we report the first-order conversion of amorphous nanoclusters (AMCs) to InAs MSCs prior to the formation of CQDs. We find that MSC, isolated via gel-permeation chromatography, is more stable than purified AMCs, as demonstrated in various chemical and thermolytic reactions. While the surface of InAs AMCs and MSC is similarly bound with carboxylate ligands, detailed structural analyses employing synchrotron X-ray scattering and X-ray absorption spectroscopy unveil subtle distinctions arising from the distinct surface properties and structural disorder characteristics of InAs nanoclusters. We propose that InAs AMCs undergo a surface reduction and structural ordering process, resulting in the formation of an InAs MSC in a thermodynamically local minimum state. Furthermore, we demonstrate that both types of nanoclusters serve as viable precursors, providing a similar monomer supply rate at elevated temperatures of around 300 °C. This study offers invaluable insights into the interplay of structure and chemical stability in binary nanoclusters, enhancing our ability to design these nanoclusters as precursors for highly monodisperse CQDs.
Collapse
Affiliation(s)
- Jibin Shin
- Department of Energy Science (DOES) and Center for Artificial Atoms, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do 16419, South Korea
| | - Mahnmin Choi
- Department of Energy Science (DOES) and Center for Artificial Atoms, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do 16419, South Korea
| | - Doeun Shim
- Department of Physics and Chemistry, DGIST, Daegu 42988, South Korea
| | - Tyler Joe Ziehl
- Department of Chemistry, Dalhousie University, 6299 South Street, Halifax NSB3H 4R2, Canada
| | - Seongmin Park
- Department of Energy Science (DOES) and Center for Artificial Atoms, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do 16419, South Korea
| | - Eunhye Cho
- Department of Energy Science (DOES) and Center for Artificial Atoms, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do 16419, South Korea
| | - Peng Zhang
- Department of Chemistry, Dalhousie University, 6299 South Street, Halifax NSB3H 4R2, Canada
| | - Hangil Lee
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, South Korea
| | - Joongoo Kang
- Department of Physics and Chemistry, DGIST, Daegu 42988, South Korea
| | - Sohee Jeong
- Department of Energy Science (DOES) and Center for Artificial Atoms, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do 16419, South Korea
- Sungkyunkwan Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do 16419, South Korea
| |
Collapse
|
3
|
Yang Y, Li Y, Luan C, Rowell N, Wang S, Zhang C, Huang W, Chen X, Yu K. Transformation Pathways in Colloidal CdTeSe Magic‐Size Clusters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yusha Yang
- Engineering Research Center in Biomaterials Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Yang Li
- Engineering Research Center in Biomaterials Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Chaoran Luan
- Laboratory of Ethnopharmacology West China School of Medicine West China Hospital Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Nelson Rowell
- Metrology Research Centre National Research Council Canada Ontario K1A 0R6 Canada
| | - Shanling Wang
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Chunchun Zhang
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Wen Huang
- Laboratory of Ethnopharmacology West China School of Medicine West China Hospital Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials Sichuan University Chengdu Sichuan 610065 P. R. China
- Institute of Atomic and Molecular Physics Sichuan University Chengdu Sichuan 610065 P. R. China
| |
Collapse
|
4
|
Yang Y, Li Y, Luan C, Rowell N, Wang S, Zhang C, Huang W, Chen X, Yu K. Transformation Pathways in Colloidal CdTeSe Magic-Size Clusters. Angew Chem Int Ed Engl 2021; 61:e202114551. [PMID: 34842312 DOI: 10.1002/anie.202114551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Indexed: 02/05/2023]
Abstract
A rarely studied transformation in colloidal ternary magic-size clusters (MSCs) is addressed. We report the first observation of the transformation from ternary CdTeSe MSC-399 to MSC-422, which occurs at room temperature. These two MSC types display sharp optical absorption resonances at 399 and 422 nm, respectively, and are related in that they are quasi isomers, together with their counterpart precursor compounds (PCs). Binary CdTe and CdSe samples were prepared in the prenucleation stage also called the induction period (IP). After they were mixed and placed in a mixture of toluene and octylamine, the transformation was found to take place and to be assisted by the addition of the CdSe IP sample. A binary IP sample contains corresponding binary PCs and monomers (Mo) and fragments (Fr). We argue that the transformation pathway is enabled by the corresponding ternary PCs, involving the substitution reaction, namely CdTeSe PC-399 + CdSe (Mo/Fr)-1 ⇒ CdTeSe PC-422 + CdSe (Mo/Fr)-2. The present study provides an in-depth understanding of the formation characteristics of the MSCs.
Collapse
Affiliation(s)
- Yusha Yang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Yang Li
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Chaoran Luan
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Nelson Rowell
- Metrology Research Centre, National Research Council Canada, Ontario, K1A 0R6, Canada
| | - Shanling Wang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Chunchun Zhang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Wen Huang
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| |
Collapse
|
5
|
Zhu J, Cao Z, Zhu Y, Rowell N, Li Y, Wang S, Zhang C, Jiang G, Zhang M, Zeng J, Yu K. Transformation Pathway from CdSe Magic‐Size Clusters with Absorption Doublets at 373/393 nm to Clusters at 434/460 nm. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jinming Zhu
- Institute of Atomic and Molecular Physics Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Zhaopeng Cao
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 P. R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yongcheng Zhu
- Institute of Atomic and Molecular Physics Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Nelson Rowell
- Metrology Research Centre National Research Council Canada Ottawa Ontario K1A 0R6 Canada
| | - Yan Li
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 P. R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shanling Wang
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Chunchun Zhang
- Analytical & Testing Center Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Gang Jiang
- Institute of Atomic and Molecular Physics Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Meng Zhang
- Institute of Atomic and Molecular Physics Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Jianrong Zeng
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 P. R. China
- Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
| | - Kui Yu
- Institute of Atomic and Molecular Physics Sichuan University Chengdu Sichuan 610065 P. R. China
- Engineering Research Center in Biomaterials Sichuan University Chengdu Sichuan 610065 P. R. China
| |
Collapse
|
6
|
Zhu J, Cao Z, Zhu Y, Rowell N, Li Y, Wang S, Zhang C, Jiang G, Zhang M, Zeng J, Yu K. Transformation Pathway from CdSe Magic-Size Clusters with Absorption Doublets at 373/393 nm to Clusters at 434/460 nm. Angew Chem Int Ed Engl 2021; 60:20358-20365. [PMID: 33960093 DOI: 10.1002/anie.202104986] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Divergent interpretations have appeared in the literature regarding the structural nature and evolutionary behavior for photoluminescent CdSe nanospecies with sharp doublets in optical absorption. We report a comprehensive description of the transformation pathway from one CdSe nanospecies displaying an absorption doublet at 373/393 nm to another species with a doublet at 433/460 nm. These two nanospecies are zero-dimensional (0D) magic-size clusters (MSCs) with 3D quantum confinement, and are labeled dMSC-393 and dMSC-460, respectively. Synchrotron-based small-angle X-ray scattering (SAXS) returns a radius of gyration of 0.92 nm for dMSC-393 and 1.14 nm for dMSC-460, and indicates that both types are disc shaped with the exponent of the SAXS form factor equal to 2.1. The MSCs develop from their unique counterpart precursor compounds (PCs), which are labeled PC-393 and PC-460, respectively. For the dMSC-393 to dMSC-460 transformation, the proposed PC-enabled pathway is comprised of three key steps, dMSC-393 to PC-393 (Step 1), PC-393 to PC-460 (Step 2 involving monomer addition), and PC-460 to dMSC-460 (Step 3). The present study provides a framework for understanding the PC-based evolution of MSCs and how PCs enable transformations between MSCs.
Collapse
Affiliation(s)
- Jinming Zhu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Zhaopeng Cao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongcheng Zhu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Nelson Rowell
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Yan Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shanling Wang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Chunchun Zhang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Gang Jiang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Meng Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Jianrong Zeng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.,Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Kui Yu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| |
Collapse
|
7
|
Vickers ET, Chen Z, Cherrette V, Smart T, Zhang P, Ping Y, Zhang JZ. Interplay between Perovskite Magic-Sized Clusters and Amino Lead Halide Molecular Clusters. RESEARCH (WASHINGTON, D.C.) 2021; 2021:6047971. [PMID: 33623920 PMCID: PMC7877386 DOI: 10.34133/2021/6047971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/09/2020] [Indexed: 05/10/2023]
Abstract
Recent progress has been made on the synthesis and characterization of metal halide perovskite magic-sized clusters (PMSCs) with ABX 3 composition (A = CH3NH3 + or Cs+, B = Pb2+, and X = Cl-, Br-, or I-). However, their mechanism of growth and structure is still not well understood. In our effort to understand their structure and growth, we discovered that a new species can be formed without the CH3NH3 + component, which we name as molecular clusters (MCs). Specifically, CH3NH3PbBr3 PMSCs, with a characteristic absorption peak at 424 nm, are synthesized using PbBr2 and CH3NH3Br as precursors and butylamine (BTYA) and valeric acid (VA) as ligands, while MCs, with an absorption peak at 402 nm, are synthesized using solely PbBr2 and BTYA, without CH3NH3Br. Interestingly, PMSCs are converted spontaneously overtime into MCs. An isosbestic point in their electronic absorption spectra indicates a direct interplay between the PMSCs and MCs. Therefore, we suggest that the MCs are precursors to the PMSCs. From spectroscopic and extended X-ray absorption fine structure (EXAFS) results, we propose some tentative structural models for the MCs. The discovery of the MCs is critical to understanding the growth of PMSCs as well as larger perovskite quantum dots (PQDs) or nanocrystals (PNCs).
Collapse
Affiliation(s)
- Evan T. Vickers
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Ziyi Chen
- Department of Chemistry, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Vivien Cherrette
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Tyler Smart
- Department of Physics, University of California, Santa Cruz, CA 95064, USA
| | - Peng Zhang
- Department of Chemistry, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Yuan Ping
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Jin Z. Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
8
|
Wang F, Zhang M, Chen W, Javaid S, Yang H, Wang S, Yang X, Zhang LC, Buntine MA, Li C, Jia G. Atomically thin heavy-metal-free ZnTe nanoplatelets formed from magic-size nanoclusters. NANOSCALE ADVANCES 2020; 2:3316-3322. [PMID: 36134285 PMCID: PMC9419797 DOI: 10.1039/d0na00409j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/26/2020] [Indexed: 06/16/2023]
Abstract
Atomically thin colloidal quasi-two-dimensional (2D) semiconductor nanoplatelets (NPLs) have attracted tremendous attention due to their excellent properties and stimulating applications. Although some advances have been achieved in Cd- and Pb-based semiconductor NPLs, research into heavy-metal-free NPLs has been reported less due to the difficulties in the synthesis and the knowledge gap in the understanding of the growth mechanism. Herein wurtzite ZnTe NPLs with an atomic thickness of about 1.5 nm have been successfully synthesized by using Superhydride (LiEt3BH) reduced tributylphosphine-Te (TBP-Te) as the tellurium precursor. Mechanistic studies, both experimentally and theoretically, elucidate the transformation from metastable ZnTe MSC-323 magic-size nanoclusters (MSCs) to metastable ZnTe MSC-398, which then forms wurtzite ZnTe NPLs via an oriented attachment mechanism along the [100] and [002] directions of the wurtzite structure. This work not only provides insightful views into the growth mechanism of 2D NPLs but also opens an avenue for their applications in optoelectronics.
Collapse
Affiliation(s)
- Fei Wang
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Science, Curtin University Bentley WA 6102 Australia
| | - Minyi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Wei Chen
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Science, Curtin University Bentley WA 6102 Australia
| | - Shaghraf Javaid
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Science, Curtin University Bentley WA 6102 Australia
| | - Heng Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University 149 Yanchang Road Shanghai 200072 P. R. China
| | - Sheng Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University 149 Yanchang Road Shanghai 200072 P. R. China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University 149 Yanchang Road Shanghai 200072 P. R. China
| | - Lai-Chang Zhang
- School of Engineering, Edith Cowan University 270 Joondalup Drive Joondalup WA 6027 Australia
| | - Mark A Buntine
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Science, Curtin University Bentley WA 6102 Australia
| | - Chunsen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Guohua Jia
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Science, Curtin University Bentley WA 6102 Australia
| |
Collapse
|
9
|
Zhang H, Luan C, Gao D, Zhang M, Rowell N, Willis M, Chen M, Zeng J, Fan H, Huang W, Chen X, Yu K. Room‐Temperature Formation Pathway for CdTeSe Alloy Magic‐Size Clusters. Angew Chem Int Ed Engl 2020; 59:16943-16952. [PMID: 32558096 DOI: 10.1002/anie.202005643] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Hai Zhang
- Engineering Research Center in Biomaterials Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Chaoran Luan
- Engineering Research Center in Biomaterials Sichuan University Chengdu Sichuan 610065 P. R. China
- Laboratory of Ethnopharmacology West China School of Medicine Chengdu Sichuan 610065 P. R. China
- West China Hospital Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Dong Gao
- Institute of Atomic and Molecular Physics Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Meng Zhang
- Institute of Atomic and Molecular Physics Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Nelson Rowell
- Metrology Research Centre National Research Council Canada Ottawa Ontario K1A 0R6 Canada
| | - Maureen Willis
- School of Physical Science and Technology Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Meng Chen
- School of Chemical Engineering Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 P. R. China
| | - Hongsong Fan
- Engineering Research Center in Biomaterials Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Wen Huang
- Laboratory of Ethnopharmacology West China School of Medicine Chengdu Sichuan 610065 P. R. China
- West China Hospital Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials Sichuan University Chengdu Sichuan 610065 P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials Sichuan University Chengdu Sichuan 610065 P. R. China
- Institute of Atomic and Molecular Physics Sichuan University Chengdu Sichuan 610065 P. R. China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu Sichuan 610065 P. R. China
| |
Collapse
|
10
|
|