1
|
Querebillo CJ. A Review on Nano Ti-Based Oxides for Dark and Photocatalysis: From Photoinduced Processes to Bioimplant Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:982. [PMID: 36985872 PMCID: PMC10058723 DOI: 10.3390/nano13060982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Catalysis on TiO2 nanomaterials in the presence of H2O and oxygen plays a crucial role in the advancement of many different fields, such as clean energy technologies, catalysis, disinfection, and bioimplants. Photocatalysis on TiO2 nanomaterials is well-established and has advanced in the last decades in terms of the understanding of its underlying principles and improvement of its efficiency. Meanwhile, the increasing complexity of modern scientific challenges in disinfection and bioimplants requires a profound mechanistic understanding of both residual and dark catalysis. Here, an overview of the progress made in TiO2 catalysis is given both in the presence and absence of light. It begins with the mechanisms involving reactive oxygen species (ROS) in TiO2 photocatalysis. This is followed by improvements in their photocatalytic efficiency due to their nanomorphology and states by enhancing charge separation and increasing light harvesting. A subsection on black TiO2 nanomaterials and their interesting properties and physics is also included. Progress in residual catalysis and dark catalysis on TiO2 are then presented. Safety, microbicidal effect, and studies on Ti-oxides for bioimplants are also presented. Finally, conclusions and future perspectives in light of disinfection and bioimplant application are given.
Collapse
Affiliation(s)
- Christine Joy Querebillo
- Leibniz-Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| |
Collapse
|
2
|
Li F, Wang B, Chen X, Lai Y, Wang T, Fan H, Yang X, Guo Q. Photocatalytic Oxidative Dehydrogenation of Propane for Selective Propene Production with TiO 2. JACS AU 2022; 2:2607-2616. [PMID: 36465539 PMCID: PMC9709955 DOI: 10.1021/jacsau.2c00512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Oxidative dehydrogenation of propane (ODHP) as an exothermic process is a promising method to produce propene (C3H6) with lower energy consumption in chemical industry. However, the selectivity of the C3H6 product is always poor because of overoxidation. Herein, the ODHP reaction into C3H6 on a model rutile(R)-TiO2(110) surface at low temperature via photocatalysis has been realized successfully. The results illustrate that photocatalytic oxidative dehydrogenation of propane (C3H8) into C3H6 can occur efficiently on R-TiO2(110) at 90 K via a stepwise manner, in which the initial C-H cleavage occurs via the hole coupled C-H bond cleavage pathway followed by a radical mediated C-H cleavage to the C3H6 product. An exceptional selectivity of ∼90% for C3H6 production is achieved at about 13% propane conversion. The mechanistic model constructed in this study not only advances our understanding of C-H bond activation but also provides a new pathway for highly selective ODHP into C3H6 under mild conditions.
Collapse
Affiliation(s)
- Fangliang Li
- Shenzhen
Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong518055, P. R. China
| | - Binli Wang
- Shenzhen
Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong518055, P. R. China
| | - Xiao Chen
- Shenzhen
Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong518055, P. R. China
| | - Yuemiao Lai
- Shenzhen
Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong518055, P. R. China
| | - Tao Wang
- Shenzhen
Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong518055, P. R. China
| | - Hongjun Fan
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning116023, P. R. China
| | - Xueming Yang
- Shenzhen
Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong518055, P. R. China
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning116023, P. R. China
- Hefei
National Laboratory, Hefei230088, P. R. China
| | - Qing Guo
- Shenzhen
Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong518055, P. R. China
| |
Collapse
|
3
|
Yuan J, Zhang H. Determining the Reaction Mechanisms of Photo‐Thermo Synergetic Processes by Kinetic Investigations. Chemistry 2022; 28:e202201432. [DOI: 10.1002/chem.202201432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Jin Yuan
- School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 China
- Haihe Laboratory of Sustainable Chemical Transformation Tianjin 300350 China
| | - Hongbo Zhang
- School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 China
- Haihe Laboratory of Sustainable Chemical Transformation Tianjin 300350 China
| |
Collapse
|
4
|
A Tungsten Chloride Free, One‐Step Hydrothermal Method to Synthesize P25/Blue WO
3‐x
Heterostructures. ChemistrySelect 2022. [DOI: 10.1002/slct.202200258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Yuan J, Guo J, He Z, Che L, Chen S, Zhang H. Evidence of Kinetically Relevant Consistency in Thermal and Photo‐Thermal HCOOH Decomposition over Pd/LaCrO
3
/C
3
N
4
Composite. Chemistry 2022; 28:e202104623. [DOI: 10.1002/chem.202104623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 01/26/2023]
Affiliation(s)
- Jin Yuan
- School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 P. R. China
| | - Jinqiu Guo
- School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 P. R. China
| | - Zhiwei He
- School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 P. R. China
| | - Leisheng Che
- School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 P. R. China
| | - Shanshan Chen
- School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 P. R. China
| | - Hongbo Zhang
- School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 P. R. China
| |
Collapse
|
6
|
A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen. Nat Catal 2021. [DOI: 10.1038/s41929-021-00708-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Feng X, Liu D, Yan B, Shao M, Hao Z, Yuan G, Yu H, Zhang Y. Highly Active PdO/Mn
3
O
4
/CeO
2
Nanocomposites Supported on One Dimensional Halloysite Nanotubes for Photoassisted Thermal Catalytic Methane Combustion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xilan Feng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Dapeng Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Baolin Yan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Mingzhe Shao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Zhimin Hao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Guobao Yuan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Haohan Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Yu Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 P. R. China
| |
Collapse
|
8
|
Feng X, Liu D, Yan B, Shao M, Hao Z, Yuan G, Yu H, Zhang Y. Highly Active PdO/Mn 3 O 4 /CeO 2 Nanocomposites Supported on One Dimensional Halloysite Nanotubes for Photoassisted Thermal Catalytic Methane Combustion. Angew Chem Int Ed Engl 2021; 60:18552-18556. [PMID: 34159698 DOI: 10.1002/anie.202107226] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 11/08/2022]
Abstract
In this work, we have successfully triggered the aqueous auto-redox reactions between reductive Ce(OH)3 and oxidative MnO4 - /Pd2+ ions to form PdO/Mn3 O4 /CeO2 (PMC) nanocomposites. PMC could spontaneously self-assemble into compact encapsulation on the surface of halloysite nanotubes (HNTs) to form the final one dimensional HNTs supported PMCs (HPMC). It is identified that there exists strong synergistic effects among the components of PdO, Mn3 O4 , and CeO2 , and hence HPMC could show excellent performance on photoassisted thermal catalytic CH4 combustion that its light-off temperature was sharply reduced to be 180 °C under visible light irradiation. Based on detailed studies, it is found that the catalytic reaction process well follows the classic MVK mechanism, and adsorption/activation of O2 into active oxygen species (O*) should be the rate-determining step for CH4 conversion.
Collapse
Affiliation(s)
- Xilan Feng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Dapeng Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Baolin Yan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mingzhe Shao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zhimin Hao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Guobao Yuan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Haohan Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yu Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|