1
|
Fujimura M, Kusaka S, Masuda A, Hori A, Hijikata Y, Pirillo J, Ma Y, Matsuda R. Trapping and Releasing of Oxygen in Liquid by Metal-Organic Framework with Light and Heat. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004351. [PMID: 33135313 DOI: 10.1002/smll.202004351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Nanoporous materials can adsorb small molecules into their nanospaces. However, the trapping of light gas molecules dissolved in solvents suffers from low concentration and poor adsorption affinity. Here, the reversible trapping and releasing of dissolved oxygen are shown through integrating photosensitization and chemical capturing abilities into a metal-organic framework (MOF), MOMF-1. 9,10-Di(4-pyridyl)anthracene (dpa) ligands in MOMF-1 generates singlet oxygen from triplet oxygen under photoirradiation without additional photosensitizers, and successively reacts with it to produce anthracene endoperoxide, forming MOMF-2, which is proved crystallographically. The reverse reaction also proceeds quantitatively by heating MOMF-2. Moreover, MOMF-1 exhibits excellent water resistance, and completely removes oxygen of ppm order concentrations in water. The new material shown in this report allows controlling of the amount of dissolved oxygen, which can be applicable in various fields relating to numerous oxidation phenomena.
Collapse
Affiliation(s)
- Masashi Fujimura
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Shinpei Kusaka
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Ayaka Masuda
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Akihiro Hori
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yuh Hijikata
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Jenny Pirillo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Yunsheng Ma
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
- School of Chemistry and Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu, 215500, P. R. China
| | - Ryotaro Matsuda
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
2
|
Nirosha Yalamandala B, Shen W, Min S, Chiang W, Chang S, Hu S. Advances in Functional Metal‐Organic Frameworks Based On‐Demand Drug Delivery Systems for Tumor Therapeutics. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Bhanu Nirosha Yalamandala
- Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300 Taiwan
| | - Wei‐Ting Shen
- Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300 Taiwan
| | - Sheng‐Hao Min
- Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300 Taiwan
| | - Wen‐Hsuan Chiang
- Department of Chemical Engineering National Chung Hsing University Taichung 402 Taiwan
| | - Shing‐Jyh Chang
- Department of Obstetrics and Gynecology Hsinchu MacKay Memorial Hospital Hsinchu 300 Taiwan
| | - Shang‐Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu 300 Taiwan
| |
Collapse
|
3
|
Sawayama T, Wang Y, Watanabe T, Takayanagi M, Yamamoto T, Hosono N, Uemura T. Metal‐Organic Frameworks for Practical Separation of Cyclic and Linear Polymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Taku Sawayama
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
| | - Yubo Wang
- Graduate School of Chemical Sciences and Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Tomohisa Watanabe
- Graduate School of Chemical Sciences and Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Masayoshi Takayanagi
- The Center for Data Science Education and Research Shiga University Hikone Shiga 522-8522 Japan
- RIKEN Center for Advanced Intelligence Project 1-4-1 Nihonbashi, Chuo-ku Tokyo 103-0027 Japan
| | - Takuya Yamamoto
- Division of Applied Chemistry Faculty of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Nobuhiko Hosono
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
- Department of Applied Chemistry Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Takashi Uemura
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha Kashiwa Chiba 277-8561 Japan
- Department of Applied Chemistry Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
4
|
Sawayama T, Wang Y, Watanabe T, Takayanagi M, Yamamoto T, Hosono N, Uemura T. Metal-Organic Frameworks for Practical Separation of Cyclic and Linear Polymers. Angew Chem Int Ed Engl 2021; 60:11830-11834. [PMID: 33733567 DOI: 10.1002/anie.202102794] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 12/24/2022]
Abstract
The purification step in the manufacturing of cyclic polymers is difficult as complete fractionation to eliminate linear impurities requires considerable effort. Here, we report a new polymer separation methodology that uses metal-organic frameworks (MOFs) to discriminate between linear and cyclic polyethylene glycols (PEGs) via selective polymer insertion into the MOF nanopores. Preparation of a MOF-packed column allowed analytical and preparative chromatographic separation of these topologically distinct pairs. In addition, gram-scale PEGs with only cyclic structures were successfully obtained from a crude reaction mixture by using MOF as an adsorbent.
Collapse
Affiliation(s)
- Taku Sawayama
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Yubo Wang
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Tomohisa Watanabe
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Masayoshi Takayanagi
- The Center for Data Science Education and Research, Shiga University, Hikone, Shiga, 522-8522, Japan.,RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Takuya Yamamoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Nobuhiko Hosono
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.,Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Uemura
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.,Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
5
|
Oh M, Yoon Y, Lee TS. Synthesis of poly( N-isopropylacrylamide) polymer crosslinked with an AIE-active azonaphthol for thermoreversible fluorescence. RSC Adv 2020; 10:39277-39283. [PMID: 35518410 PMCID: PMC9057382 DOI: 10.1039/d0ra08257k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/20/2020] [Indexed: 01/12/2023] Open
Abstract
A fluorescent polymer was synthesized using N-isopropylacrylamide (NIPAM) crosslinked with a divinylazonaphthol monomer via radical emulsion polymerization. Because the crosslinked polymer contained an aggregation-induced emissive (AIE) azonaphthol-based crosslinker, a thermoreversible sol-gel transformation and gelation-induced reversible fluorescence alteration were successfully attained in an aqueous medium. Like typical PNIPAM, the size and transmittance of the polymer dramatically decreased near the lower critical solution temperature (LCST, 36 °C). Such gelation facilitated aggregation of the polymer chains, resulting in the close contact between azonaphthol groups producing fluorescence. The crosslinked polymer exhibited changes in dual properties: one is related to PNIPAM structural alteration, which corresponds to conventional swelling/shrinkage behavior; and the other is involved in the reversible fluorescence change in response to the swelling/shrinkage. Because the major backbone of the polymer was composed of NIPAM with an LCST at 36 °C, the resultant polymer is expected to have potential applications in biologically related fields.
Collapse
Affiliation(s)
- Mintaek Oh
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University Daejeon 34134 Korea
| | - Yeoju Yoon
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University Daejeon 34134 Korea
| | - Taek Seung Lee
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University Daejeon 34134 Korea
| |
Collapse
|