1
|
Rizzuto C, Barberi RC, Castriota M. Development of Electrochromic Devices, Based on Polymeric Gel, for Energy Saving Applications. Polymers (Basel) 2023; 15:3347. [PMID: 37631404 PMCID: PMC10458007 DOI: 10.3390/polym15163347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
In this work, the implementation of an electrochromic device (10 cm × 10 cm in size) for energy saving applications has been presented. As electrochromic system has been used with an electrochromic solution (ECsol) made by ethyl viologen diperchlorate [EV(ClO4)2], 1,1'-diethyl ferrocene (DEFc) and propylene carbonate (PC), as solvent. The final system has been obtained by mixing the ECsol, described above, with a polymeric system made by Bisphenol-A glycerolate (1 glycerol/phenol) diacrylate (BPA) and 2,2-Dimethoxy-2-phenylacetophenone (Irgacure 651) in a weight percentage equal to 60:40% w/w, respectively. Lithography has been used to make a spacer pattern with a thickness of about 15-20 µm between the two substrates. Micro-Raman spectroscopy confirmed the presence of the EV•+ as justified by the blue color of the electrochromic device in the ON state. Electrochemical and optical properties of the electrochromic device have been studied. The device shows reversible electrochromic behavior as confirmed by cyclic color variation due to the reduction and oxidation process of the EV2+/EV•+ couple. The electrochromic device shows a variation of the % transmittance in the visible region at 400 nm of 59.6% in the OFF state and 0.48% at 3.0 V. At 606 nm the transmittance in the bleached state is 84.58% in the OFF state and then decreases to 1.01% when it is fully colored at 3.0 V. In the NIR region at 890 nm, the device shows a transmittance of 74.3% in the OFF state and 23.7% at 3.0 V while at 1165 nm the values of the transmittance changed from 83.21% in the OFF state to 1.58% in the ON state at 3.0 V. The electrochromic device shows high values of CCR% and exhibits excellent values of CE in both visible and near-infrared regions when switched between OFF/ON states. In the NIR region at 890 nm, electrochromic devices can be used for the energy-saving of buildings with a promising CE of 120.9 cm2/C and 420.1 cm2/C at 1165 nm.
Collapse
Affiliation(s)
- Carmen Rizzuto
- Department of Physics, University of Calabria Ponte Bucci, Cubo 33B, 87036 Rende, CS, Italy
| | - Riccardo C. Barberi
- Department of Physics, University of Calabria Ponte Bucci, Cubo 33B, 87036 Rende, CS, Italy
- CNR-Nanotec c/o Department of Physics, University of Calabria Ponte Bucci, Cubo 33B, 87036 Rende, CS, Italy
| | - Marco Castriota
- Department of Physics, University of Calabria Ponte Bucci, Cubo 33B, 87036 Rende, CS, Italy
- CNR-Nanotec c/o Department of Physics, University of Calabria Ponte Bucci, Cubo 33B, 87036 Rende, CS, Italy
| |
Collapse
|
2
|
Sun W, Zhou C, Fan Y, He Y, Zhang H, Quan Z, Kong H, Fu F, Qin J, Shen Y, Chen H. Ion Co-storage in Porous Organic Frameworks through On-site Coulomb Interactions for High Energy and Power Density Batteries. Angew Chem Int Ed Engl 2023; 62:e202300158. [PMID: 36740576 DOI: 10.1002/anie.202300158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Fast and continuous ion insertion is blocked in the common electrodes operating with widely accepted single-ion storage mechanism, primarily due to Coulomb repulsion between the same ions. It results in an irreconcilable conflict between capacity and rate performance. Herein, we designed a porous organic framework with novel multiple-ion co-storage modes, including PF6 - /Li+ , OTF- /Mg2+ , and OTF- /Zn2+ co-storage. The Coulomb interactions between cationic and anionic carriers in the framework can significantly promote electrode kinetics, by rejuvenating fast ion carrier migration toward framework interior. Consequently, the framework via PF6 - /Li+ co-storage mode shows a high energy density of 878 Wh kg-1 cycled more than 20 000 cycles, with an excellent power density of 28 kW kg-1 that is already comparable to commercial supercapacitors. The both greatly improved energy and power densities via the co-storage mode may pave a way for exploring new electrodes that are not available from common single-ion electrodes.
Collapse
Affiliation(s)
- Wenlu Sun
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Congjia Zhou
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yingzhu Fan
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yulu He
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Hui Zhang
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Zhilong Quan
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Huabin Kong
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Fang Fu
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jiaqian Qin
- Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yanbin Shen
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Hongwei Chen
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China.,Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
3
|
Zhang S, Ma L, Ma W, Chen L, Gao K, Yu S, Zhang M, Zhang L, He G. Selenoviologen‐Appendant Metallacycles with Highly Stable Radical Cations and Long‐Lived Charge Separation States for Electrochromism and Photocatalysis. Angew Chem Int Ed Engl 2022; 61:e202209054. [DOI: 10.1002/anie.202209054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Sikun Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Wenqiang Ma
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Long Chen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Kai Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Shi Yu
- School of Materials Science & Engineering Chang'an University Xi'an Shaanxi 710064 China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Lei Zhang
- School of Optoelectronic Engineering Xidian University Xi'an Shaanxi 710126 China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| |
Collapse
|
4
|
Zhang S, Ma L, Ma W, Chen L, Gao K, Yu S, Zhang M, Zhang L, He G. Selenoviologen‐Appendant Metallacycles with Highly Stable Radical Cations and Long‐Lived Charge Separation States for Electrochromism and Photocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sikun Zhang
- Xi'an Jiaotong University Frontier Institute of Science and Technology Xi'an CHINA
| | - Lingzhi Ma
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Wenqiang Ma
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Long Chen
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Kai Gao
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Shi Yu
- Chang'an University School of Materials Science & Engineering CHINA
| | - Mingming Zhang
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Lei Zhang
- Xidian University School of Optoelectronic Engineering CHINA
| | - Gang He
- Xi'an Jiaotong University Frontier Institute of Science and Technology No 99, Yanxiang Road 710054 Xi'an CHINA
| |
Collapse
|
5
|
Lau VWH, Kim JB, Zou F, Kang YM. Elucidating the charge storage mechanism of carbonaceous and organic electrode materials for sodium ion batteries. Chem Commun (Camb) 2021; 57:13465-13494. [PMID: 34853843 DOI: 10.1039/d1cc04925a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sodium ion batteries (SIB) have received much research attention in the past decades as they are considered to be one alternative to the currently prevalent lithium ion batteries, and carbonaceous and organic compounds present two promising classes of SIB electrode materials advantaged by abundance of their constituent elements and reduced environmental footprints. To accelerate the development of these materials for SIB applications, future research directions must be guided by a thorough understanding of the charge storage mechanism. This review presents recent efforts in mechanism elucidation for these two classes of SIB electrode materials since, compared to their inorganic counterparts, they have unique challenges in material analysis. Topics covered will include characterization techniques and analytical frameworks for mechanism elucidation, emphasizing the advantages and limitations of individual experimental methodologies and providing a commentary on scientific rigor in result interpretation.
Collapse
Affiliation(s)
- Vincent Wing-Hei Lau
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea. .,Brain Korea Center for Smart Materials and Devices, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Bum Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Feng Zou
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Yong-Mook Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea. .,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Juneau A, Frenette M. Exploring Curious Covalent Bonding: Raman Identification and Thermodynamics of Perpendicular and Parallel Pancake Bonding (Pimers) of Ethyl Viologen Radical Cation Dimers. J Phys Chem B 2021; 125:10805-10812. [PMID: 34543028 DOI: 10.1021/acs.jpcb.1c06283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viologen radical cations can dimerize in solutions, and the resulting "pimers" were predicted to assemble into parallel and perpendicular conformers by density functional theory (DFT) calculations. Using resonance Raman, we could identify both perpendicular and parallel forms of ethyl viologen dimers. The distinction between the two forms was accomplished by studying the formation of a host-guest complex with γ-cyclodextrin. The dimer's perpendicular form was excluded due to the host cavity size, and γ-cyclodextrin addition caused a decrease in peak intensities at 1171, 1511, and 1602 cm-1 that could be assigned to the perpendicular form. DFT modeling of the vibrational spectra under preresonance conditions allowed us to assign the remaining vibrational modes for the parallel and perpendicular forms. Using variable-temperature UV-vis, the bond dissociation energy (ΔH) for this pancake-bonded dimer was measured as 13.1 ± 0.2 kcal/mol. This type of covalent pancake bonding is a challenge to properly describe using DFT methods. Previously, B97D was found to best describe the ΔG of this dimerization (Angew. Chem. 2017, 129, 9563-9567), but this method underestimates the ΔH by 6 kcal/mol. Of the 11 functionals tested, we found that B3LYP with Grimme's D3 dispersion effect can best reproduce the ΔH. Energy decomposition analysis of the bonding energy showed that solvation effects were the most important contributor-polar solvents are needed to overcome the Coulomb repulsion between the two positively charged monomers. Dispersion effects are second in importance and appear larger than the favorable orbital interaction obtained by singly occupied molecular orbital (SOMO)-SOMO orbital overlap. This study brings forth important insights into the curious cases of covalent bonding between two π-delocalized radicals.
Collapse
Affiliation(s)
- Antoine Juneau
- Department of Chemistry and NanoQAM, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Mathieu Frenette
- Department of Chemistry and NanoQAM, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
7
|
Chen M, Liu L, Zhang P, Chen H. A low-cost and high-loading viologen-based organic electrode for rechargeable lithium batteries. RSC Adv 2021; 11:24429-24435. [PMID: 35479055 PMCID: PMC9036681 DOI: 10.1039/d1ra03068j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022] Open
Abstract
Organic active materials are regarded as a very promising choice for lithium batteries because of several outstanding advantages such as low-cost, flexible tunability and pollution-free sources. Viologen compounds are attractive two-electron storage materials with low redox potentials, which are mainly used as anolytes in redox flow batteries (RFBs) considering their high solubility in electrolytes. However, due to their relatively large molecular weight and low density, it is difficult to prepare high-loading and stable-cycling electrodes for lithium battery application. In this research, by adopting 4,4'-bipyridine as the raw material and combining salification with a high-energy ball milling method, a low-solubility and high-stability viologen carbon-coated composite, ethyl viologen dihexafluorophosphate-Ketjen black (EV-KB), is synthesized. Then, by optimizing the electrode preparation process, a high-loading viologen-based electrode is successfully prepared. Salification effectively reduces the solubility of viologen compounds in the electrolyte so that the EV-KB composite can be used in lithium batteries. At the same time, it is pointed out that current collectors and slurry solvents play an important role in achieving the high-loading electrode. By deliberately selecting carbon paper as the current collector and ethanol as the solvent, the EV-KB composite organic electrode with a loading up to 1.5-9 mg cm-2 can achieve a specific capacity of 106-79 mA h g-1 for 400 stable cycles with a coulombic efficiency of 96% as well as a good rate capability. The synthesis method and electrode preparation optimization process introduced in this paper provide a reference for other types of organic active materials to be used in high-loading lithium batteries.
Collapse
Affiliation(s)
- Mao Chen
- Chemical Hybrid Energy Novel Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen Guangdong 518055 PR China
| | - Lei Liu
- College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 China
| | - Peiyao Zhang
- Chemical Hybrid Energy Novel Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen Guangdong 518055 PR China
| | - Hongning Chen
- Chemical Hybrid Energy Novel Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen Guangdong 518055 PR China
| |
Collapse
|