Liang Q, Ma X, Long T, Yao J, Liao Q, Fu H. Circularly Polarized Lasing from a Microcavity Filled with Achiral Single-Crystalline Microribbons.
Angew Chem Int Ed Engl 2023;
62:e202213229. [PMID:
36494879 DOI:
10.1002/anie.202213229]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Organic circularly polarized (CP) lasers have received increasing attention due to their future photoelectric applications. Here, we demonstrate a CP laser from a pure organic crystal-filled microcavity without any chiral molecules or chiral structures. Benefited from the giant anisotropy and excellent laser gain of organic crystals, optical Rashba-Dresselhaus spin-orbit coupling effect can be induced and is conductive to the CP laser in such microcavities. The maximum dissymmetry factor of the CP lasing with opposite helicities reachs 1.2. Our strategy may provide a new idea for the design of CP lasers towards future 3D laser displays, information storage and other fields.
Collapse