1
|
Xia ZJ, Zhong YM, Hu SJ, Cai LX, Sun QF. Dynamic Interconversion and Induced-Fit Guest Binding with Two Macrocycle-Based Coordination Cages. Inorg Chem 2023; 62:8293-8299. [PMID: 37184566 DOI: 10.1021/acs.inorgchem.3c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We report the syntheses and host-guest chemistry of two interconvertible coordination cages, Pd2L2 and Pd1L1, from a dynamic macrocycle ligand (L) and a cis-blocking (tmen)Pd(NO3)2 (tmen = tetramethylethylenediamine) unit (Pd). The water-soluble macrocyclic L, which can bind various polycyclic aromatic hydrocarbon (PAH) guests in its cis-conformation, was constructed via four pyridinium bonds between two 2,4,6-tri(4-pyridyl)-1,3,5-triazine [TPT] panels and two p-xylene bridges. We selectively formed each cage either by changing the reaction concentration/solvent/temperature or through induced-fit guest encapsulation, while direct assembly of L and Pd resulted in a mixture of Pd2L2 and Pd1L1 in equilibrium. X-ray structures of the free ligand and the host-guest complexes confirmed the induce-fit adaptive changes in the ligand's conformation and the cage's cavity. This work demonstrates a useful strategy for designing multistimuli-responsive supramolecular hosts by coordination self-assembly with macrocyclic ligands featuring rich conformational freedom.
Collapse
Affiliation(s)
- Zi-Jun Xia
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Ying-Mei Zhong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
2
|
Liu Y, Liao SH, Dai WT, Bai Q, Lu S, Wang H, Li X, Zhang Z, Wang P, Lu W, Zhang Q. Controlled Construction of Heteroleptic [Pd 2 (L A ) 2 (L B )(L C )] 4+ Cages: A Facile Approach for Site-Selective endo-Functionalization of Supramolecular Cavities. Angew Chem Int Ed Engl 2023; 62:e202217215. [PMID: 36495225 DOI: 10.1002/anie.202217215] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Construction of supramolecular structures with internal functionalities is a promising approach to build enzyme-like cavities. The endo-functionalized [Pd12 L24 ] and [Pd2 L4 ] coordination cages represent the most successful systems in this regard. However, these systems mainly contain one type of endo-moiety. We herein provide a solution for the controlled endo-functionalization of [Pd2 L4 ] cages. Site-selective introduction of the endo-functional group was achieved through the formation of heteroleptic [Pd2 (LA )2 (LB )(LC )] cages. Using two orthogonal steric control elements is the key for the selective formation of the hetero-assemblies. We demonstrated the construction of two hetero-cages with a single internal functional group as well as a hetero-cage with two distinct endohedral functionalities. The endo-functionalized hetero-cages bound sulfonate guests with fast-exchange dynamics. This strategy provides a new solution for the controlled endo-functionalization of supramolecular cavities.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Shou-Heng Liao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Wen-Tao Dai
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, 3688 Nanhai Ave., Experimental Building, P112, Shenzhen, Guangdong 518060, P. R. China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, 3688 Nanhai Ave., Experimental Building, P112, Shenzhen, Guangdong 518060, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, 3688 Nanhai Ave., Experimental Building, P112, Shenzhen, Guangdong 518060, P. R. China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Wei Lu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Qi Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
3
|
Yan D, Cai L, Hu S, Zhou Y, Zhou L, Sun Q. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induced‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022; 61:e202209879. [DOI: 10.1002/anie.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dan‐Ni Yan
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Xuan Cai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Shao‐Jun Hu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Fang Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Li‐Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
4
|
Yan DN, Cai LX, Hu SJ, Zhou YF, Zhou LP, Sun QF. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induce‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dan-Ni Yan
- University of the Chinese Academy of Sciences Fujian College CHINA
| | - Li-Xuan Cai
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Shao-Jun Hu
- University of the Chinese Academy of Sciences Fujian College 350002 Fuzhou CHINA
| | - Yan-Fang Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Li-Peng Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Qing-Fu Sun
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
5
|
Luo N, Ao YF, Wang DX, Wang QQ. Exploiting Anion-π Interactions for Efficient and Selective Catalysis with Chiral Molecular Cages. Angew Chem Int Ed Engl 2021; 60:20650-20655. [PMID: 34050685 DOI: 10.1002/anie.202106509] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Exploiting anion-π interactions in catalyst design is a fascinating direction to develop new and fundamental catalysis. For the appealing yet flexible π-face activation, can two or more π-acidic surfaces be manipulated for cooperative activation to achieve efficient transformation and particularly selectivity control is highly desirable. Here, we demonstrate a supramolecular π-catalysis strategy by establishing cooperative π-face activation in a confined electron-deficient cage cavity. The catalysts have a triazine based prism-like cage core and pendant chiral base sites. Only 2 mol % of cage catalyst efficiently catalyzed the decarboxylate Mannich reactions of sulfamate-headed cyclic aldimines and a series of malonic acid half thioesters in nearly quantitative yields and up to 97 % ee, enabling an unprecedent organocatalytic approach. The supramolecular π-cavity is essential in harnessing cooperative anion-π interactions for the efficient activation and excellent selectivity control.
Collapse
Affiliation(s)
- Na Luo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Luo N, Ao Y, Wang D, Wang Q. Exploiting Anion–π Interactions for Efficient and Selective Catalysis with Chiral Molecular Cages. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Na Luo
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu‐Fei Ao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - De‐Xian Wang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qi‐Qiang Wang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
7
|
Gómez‐Martínez M, del Carmen Pérez‐Aguilar M, Piekarski DG, Daniliuc CG, García Mancheño O. N,N-Dialkylhydrazones as Versatile Umpolung Reagents in Enantioselective Anion-Binding Catalysis. Angew Chem Int Ed Engl 2021; 60:5102-5107. [PMID: 33306858 PMCID: PMC7986925 DOI: 10.1002/anie.202013380] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Indexed: 12/31/2022]
Abstract
An enantioselective anion-binding organocatalytic approach with versatile N,N-dialkylhydrazones (DAHs) as polarity-reversed (umpolung) nucleophiles is presented. For the application of this concept, a highly ordered hydrogen-bond (HB) network between a carefully selected CF3 -substituted triazole-based multidentate HB-donor catalyst, the ionic substrate and the hydrazone in a supramolecular chiral ion-pair complex was envisioned. The formation of such a network was further supported by both experimental and computational studies, which showed the crucial role of the anion as a template unit. The asymmetric Reissert-type reaction of quinolines as a model test reaction chemoselectively delivered highly enantiomerically enriched hydrazones (up 95:5 e.r.) that could be further derivatized to value-added compounds with up to three stereocenters.
Collapse
Affiliation(s)
| | | | - Dariusz G. Piekarski
- Organic Chemistry InstituteMünster UniversityCorrensstrasse 36MünsterGermany
- Current affiliation: Institute of Physical ChemistryPolish Academy of SciencesKasprzaka 44/52, 01-224WarsawPoland
| | | | | |
Collapse
|
8
|
Gómez‐Martínez M, Carmen Pérez‐Aguilar M, Piekarski DG, Daniliuc CG, García Mancheño O. N
,
N
‐Dialkylhydrazones as Versatile Umpolung Reagents in Enantioselective Anion‐Binding Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | | | - Dariusz G. Piekarski
- Organic Chemistry Institute Münster University Corrensstrasse 36 Münster Germany
- Current affiliation: Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw Poland
| | | | - Olga García Mancheño
- Organic Chemistry Institute Münster University Corrensstrasse 36 Münster Germany
| |
Collapse
|
9
|
Ohishi Y, Masuda K, Kudo K, Abe H, Inouye M. Saccharide Recognition by a Three‐Arm‐Shaped Host Having Preorganized Three‐Dimensional Hydrogen‐Bonding Sites. Chemistry 2020; 27:785-793. [DOI: 10.1002/chem.202004147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Yuki Ohishi
- Graduate School of Pharmaceutical Sciences University of Toyama Sugitani 2630 Toyama 930-0194 Japan
| | - Kentaro Masuda
- Graduate School of Pharmaceutical Sciences University of Toyama Sugitani 2630 Toyama 930-0194 Japan
| | - Kazuki Kudo
- Graduate School of Pharmaceutical Sciences University of Toyama Sugitani 2630 Toyama 930-0194 Japan
| | - Hajime Abe
- Faculty of Pharmaceutical Sciences Himeji Dokkyo University Kami-ohno 7-2-1 Himeji Hyogo 670-8524 Japan
| | - Masahiko Inouye
- Graduate School of Pharmaceutical Sciences University of Toyama Sugitani 2630 Toyama 930-0194 Japan
| |
Collapse
|