1
|
Guo W, Yan S, Wang S, Jing L, Mao C, Zhang Z, Peng H, Guo X, Li G. A Simple Route to Fabricate an Artificial Interface Protective Layer on a Zn Anode for Aqueous Zn‐Ion Batteries. ChemistrySelect 2022. [DOI: 10.1002/slct.202200926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wenqian Guo
- College of Material Science and Engineering Qingdao University of Science and Technology No.53 Zhengzhou Road Qingdao Shandong 266042 PR China
| | - Sixu Yan
- College of Material Science and Engineering Qingdao University of Science and Technology No.53 Zhengzhou Road Qingdao Shandong 266042 PR China
| | - Shuyi Wang
- College of Material Science and Engineering Qingdao University of Science and Technology No.53 Zhengzhou Road Qingdao Shandong 266042 PR China
| | - Lei Jing
- Jiangsu Guanlian Polymeric Material Co., Ltd. No. 58 Xinliu Road, Ludu, Taicang Jiangsu China
| | - Changming Mao
- College of Material Science and Engineering Qingdao University of Science and Technology No.53 Zhengzhou Road Qingdao Shandong 266042 PR China
| | - Zhonghua Zhang
- College of Material Science and Engineering Qingdao University of Science and Technology No.53 Zhengzhou Road Qingdao Shandong 266042 PR China
| | - Hongrui Peng
- College of Material Science and Engineering Qingdao University of Science and Technology No.53 Zhengzhou Road Qingdao Shandong 266042 PR China
| | - Xiaosong Guo
- College of Material Science and Engineering Qingdao University of Science and Technology No.53 Zhengzhou Road Qingdao Shandong 266042 PR China
| | - Guicun Li
- College of Material Science and Engineering Qingdao University of Science and Technology No.53 Zhengzhou Road Qingdao Shandong 266042 PR China
| |
Collapse
|
2
|
Zhang W, Yin J, Wang C, Zhao L, Jian W, Lu K, Lin H, Qiu X, Alshareef HN. Lignin Derived Porous Carbons: Synthesis Methods and Supercapacitor Applications. SMALL METHODS 2021; 5:e2100896. [PMID: 34927974 DOI: 10.1002/smtd.202100896] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/04/2021] [Indexed: 05/12/2023]
Abstract
Lignin, one of the renewable constituents in natural plant biomasses, holds great potential as a sustainable source of functional carbon materials. Tremendous research efforts have been made on lignin-derived carbon electrodes for rechargeable batteries. However, lignin is considered as one of the most promising carbon precursors for the development of high-performance, low-cost porous carbon electrode materials for supercapacitor applications. Yet, these efforts have not been reviewed in detail in the current literature. This review, therefore, offers a basis for the utilization of lignin as a pivotal precursor for the synthesis of porous carbons for use in supercapacitor electrode applications. Lignin chemistry, the synthesis process of lignin-derived porous carbons, and future directions for developing better porous carbon electrode materials from lignin are systematically reviewed. Technological hurdles and approaches that should be prioritized in future research are presented.
Collapse
Affiliation(s)
- Wenli Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Jian Yin
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Chaoyang District, Changchun, 130012, China
| | - Caiwei Wang
- School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), Tianhe District, Guangzhou, 510640, China
| | - Lei Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Wenbin Jian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Ke Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Haibo Lin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Chaoyang District, Changchun, 130012, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology (GDUT), Panyu District, Guangzhou, 510006, China
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Lee JH, Kim MH, Moon HR. Nanocomposite synthesis strategies based on the transformation of well-tailored metal-organic frameworks. Chem Commun (Camb) 2021; 57:6960-6974. [PMID: 34159973 DOI: 10.1039/d1cc01989a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Increasing the complexity of nanomaterials in terms of their structure and chemical composition has attracted significant attention, because it can yield unique scientific outcomes and considerable improvements for practical applications. Various approaches are being developed for the synthesis of nanostructured composites. Coordination polymers (CPs) emerged as new precursors in solid-state reactions for nanomaterials nearly two decades ago; the repetitively arranged inorganic and organic units can facilitate the production of nanoscale particles and porous carbon upon thermal decomposition. Metal-organic frameworks (MOFs), a subgroup of CPs featuring crystalline and porous structures, have subsequently become primary objects of interest in this field, as can be seen by the rapidly increasing number of reports on this topic. However, unique composite materials with increasingly complex nanostructures, which cannot be achieved via conventional methods, have been rarely realised, even though conventional MOF research has enabled the delicate control of structures at the molecular level and extensive applications as templates. In this regard, a comprehensive review of the fabrication strategies of MOF-based precursors and the thermal transformation into functional nanomaterials is provided herein, with a particular emphasis on the recent developments in nanocomposite research. We briefly introduce the roles and capabilities of MOFs in the synthesis of nanomaterials and subsequently discuss diverse synthetic routes for obtaining morphologically or compositionally advanced composite nanomaterials, based on our understanding of the MOF conversion mechanism.
Collapse
Affiliation(s)
- Jae Hwa Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Min Hyuk Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Hoi Ri Moon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| |
Collapse
|