1
|
Zhang D, Liu Y, Liu N, Jiang T, Han X, Chen Q, Ding J, Jiang D, Mao B. Synergistic Coupling of Charge Extraction and Sinking in Cu 5FeS 4/Ni 3S 2@NF for Photoassisted Electrocatalytic Oxygen Evolution. Inorg Chem 2023; 62:13587-13596. [PMID: 37556168 DOI: 10.1021/acs.inorgchem.3c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Exploring low-cost and high-performance oxygen evolution reaction (OER) catalysts has attracted great attention due to their crucial role in water splitting. Here, a bifunctional Cu5FeS4/Ni3S2@NF catalyst was in situ formed on a nickel (Ni) foam toward efficient photoassisted electrocatalytic (P-EC) OER, which displays an ultralow overpotential of 260 mV at 30 mA cm-2 in alkaline solution, outperforming most previously reported Ni-based catalysts. It also shows great potential in degradation of antibiotics as an alternative anode reaction to OER owing to the prompt transfer of photogenerated holes. The photocurrent test and transient photovoltage spectroscopy indicate that the synergistic coupling of charge extraction and sinking effects in Cu5FeS4 and Ni3S2 is critical for boosting the OER activity via photoassistance. Electrochemical active surface area and electrochemical impedance spectroscopy tests further prove that the photogenerated electromotive force can effectively compensate the overpotential of OER. This work not only provides a good guidance for integrating photocatalysis and electrocatalysis, but also indicates the key role of synergistic extraction and utilization of photogenerated charge carriers in P-EC.
Collapse
Affiliation(s)
- Dongxu Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yanhong Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Naiyun Liu
- Institute of Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Tianyao Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qitao Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jinrui Ding
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Baodong Mao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
2
|
Yang X, Mukherjee S, O'Carroll T, Hou Y, Singh MR, Gauthier JA, Wu G. Achievements, Challenges, and Perspectives on Nitrogen Electrochemistry for Carbon-Neutral Energy Technologies. Angew Chem Int Ed Engl 2023; 62:e202215938. [PMID: 36507657 DOI: 10.1002/anie.202215938] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Unrestrained anthropogenic activities have severely disrupted the global natural nitrogen cycle, causing numerous energy and environmental issues. Electrocatalytic nitrogen transformation is a feasible and promising strategy for achieving a sustainable nitrogen economy. Synergistically combining multiple nitrogen reactions can realize efficient renewable energy storage and conversion, restore the global nitrogen balance, and remediate environmental crises. Here, we provide a unique aspect to discuss the intriguing nitrogen electrochemistry by linking three essential nitrogen-containing compounds (i.e., N2 , NH3 , and NO3 - ) and integrating four essential electrochemical reactions, i.e., the nitrogen reduction reaction (N2 RR), nitrogen oxidation reaction (N2 OR), nitrate reduction reaction (NO3 RR), and ammonia oxidation reaction (NH3 OR). This minireview also summarizes the acquired knowledge of rational catalyst design and underlying reaction mechanisms for these interlinked nitrogen reactions. We further underscore the associated clean energy technologies and a sustainable nitrogen-based economy.
Collapse
Affiliation(s)
- Xiaoxuan Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Shreya Mukherjee
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Thomas O'Carroll
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,Institute of Zhejiang University - Quzhou, Quzhou, Zhejiang, 324000, China.,Donghai Laboratory, Zhoushan, 316021, China
| | - Meenesh R Singh
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60608, USA
| | - Joseph A Gauthier
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
3
|
Zhang D, Xue Y, Zheng X, Zhang C, Li Y. Multi-heterointerfaces for selective and efficient urea production. Natl Sci Rev 2023; 10:nwac209. [PMID: 36817842 PMCID: PMC9935990 DOI: 10.1093/nsr/nwac209] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
A major impediment to industrial urea synthesis is the lack of catalysts with high selectivity and activity, which inhibits the efficient industrial production of urea. Here, we report a new catalyst system suitable for the highly selective synthesis of industrial urea by in situ growth of graphdiyne on the surface of cobalt-nickel mixed oxides. Such a catalyst is a multi-heterojunction interfacial structure resulting in the obvious incomplete charge-transfer phenomenon between a graphdiyne and metal oxide interface and multiple intermolecular interactions. These intrinsic characteristics are the origin of the high performance of the catalyst. Studies on the mechanism reveal that the catalyst could effectively optimize the adsorption/desorption capacities of the intermediate and promote direct C-N coupling by significantly suppressing by-product reactions toward the formation of H2, CO, N2 and NH3. The catalyst can selectively synthesize urea directly from nitrite and carbon dioxide in water at room temperature and pressure, and exhibits a record-high Faradaic efficiency of 64.3%, nitrogen selectivity (Nurea-selectivity) of 86.0%, carbon selectivity (Curea-selectivity) of ∼100%, as well as urea yield rates of 913.2 μg h-1 mgcat -1 and remarkable long-term stability.
Collapse
Affiliation(s)
- Danyan Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yurui Xue
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuchen Zheng
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Li J, Han X, Wang D, Zhu L, Ha‐Thi M, Pino T, Arbiol J, Wu L, Nawfal Ghazzal M. A Deprotection-free Method for High-yield Synthesis of Graphdiyne Powder with In Situ Formed CuO Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202210242. [PMID: 35985984 PMCID: PMC9825875 DOI: 10.1002/anie.202210242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 01/11/2023]
Abstract
With a direct band gap, superior charge carrier mobility, and uniformly distributed pores, graphdiyne (GDY) has stimulated tremendous interest from the scientific community. However, its broad application is greatly limited by the complicated multistep synthesis process including complex deprotection of hexakis-[(trimethylsilyl)ethynyl]benzene (HEB-TMS) and peeling of GDY from the substrates. Here, we describe a deprotection-free strategy to prepare GDY powder by directly using HEB-TMS as the monomer. When CuCl was used as the catalysts in DMF solvent, the yield of GDY powder reached ≈100 %. More interestingly, uniformly dispersed CuO nanoparticles with an average diameter of ≈2.9 nm were in situ formed on GDY after the reaction. The prepared CuO/GDY was demonstrated an excellent co-catalyst for photocatalytic hydrogen evolution, comparable to the state-of-art Pt co-catalyst. The deprotection-free approach will widen the use of GDY and facilitate its scaling up to industrial level.
Collapse
Affiliation(s)
- Jian Li
- Université Paris-SaclayUMR 8000 CNRSInstitut de Chimie Physique91405OrsayFrance
| | - Xu Han
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193 Barcelona, CataloniaSpain
| | - Dongmei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
| | - Lei Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and Chemistry & University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190P. R. China
| | - Minh‐Huong Ha‐Thi
- Université Paris-SaclayCNRSInstitut des Sciences Moléculaires d'Orsay91405OrsayFrance
| | - Thomas Pino
- Université Paris-SaclayCNRSInstitut des Sciences Moléculaires d'Orsay91405OrsayFrance
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193 Barcelona, CataloniaSpain
- ICREAPg. Lluís Companys 2308010Barcelona, CataloniaSpain
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and Chemistry & University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190P. R. China
| | | |
Collapse
|
5
|
Li J, Han X, Wang D, Zhu L, Ha-Thi MH, Pino T, Arbiol J, Wu LZ, Ghazzal MN. A Deprotection‐free Method for High‐yield Synthesis of Graphdiyne Powder with in‐situ Formed CuO Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian Li
- Université Paris-Saclay UFR Sciences: Universite Paris-Saclay Faculte des Sciences d'Orsay Institut de Chimie Physique FRANCE
| | - Xu Han
- Institute of Nanoscience and Nanotechnology: Instituto de Nanociencia y Nanotecnologia Catalan Institute of Nanoscience and Nanotechnology FRANCE
| | - Dongmei Wang
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics, Chinese Academy of Sciences CHINA
| | - Lei Zhu
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences: Technical Institute of Physics and Chemistry key laboratory of photochemical conversion and optoelectronic materials CHINA
| | - Minh-Huong Ha-Thi
- Paris-Saclay University Faculty of Science Orsay: Universite Paris-Saclay Faculte des Sciences d'Orsay ISMO FRANCE
| | - Thomas Pino
- Paris-Saclay University Faculty of Science Orsay: Universite Paris-Saclay Faculte des Sciences d'Orsay ISMO FRANCE
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology: Institut Catala de Nanociencia i Nanotecnologia ICREA SPAIN
| | - Li-Zhu Wu
- Technical Institute of Physics and Chemistry CAS: Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences CHINA
| | - Mohamed Nawfal Ghazzal
- Université Paris-Saclay Faculté des Sciences d'Orsay: Universite Paris-Saclay Faculte des Sciences d'Orsay Institut de chimie physique UMR8000 - Université Paris-Saclay Bâtiment 349 - Campus d’Orsay15, avenue Jean Perrin 91405 Orsay FRANCE
| |
Collapse
|
6
|
Hui L, Xue Y, Xing C, Liu Y, Du Y, Fang Y, Yu H, Huang B, Li Y. Highly Loaded Independent Pt 0 Atoms on Graphdiyne for pH-General Methanol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104991. [PMID: 35393786 PMCID: PMC9165484 DOI: 10.1002/advs.202104991] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/08/2022] [Indexed: 06/01/2023]
Abstract
The emergence of platinum-based catalysts promotes efficient methanol oxidation reactions (MOR). However, the defects of such noble metal catalysts are high cost, easy poisoning, and limited commercial applications. The efficient utilization of a low-cost, anti-poisoning catalyst has been expected. Here, it is skillfully used N-doped graphdiyne (NGDY) to prepare a zero-valent platinum atomic catalyst (Pt/NGDY), which shows excellent activity, high pH adaptability, and high CO tolerance for MOR. The Pt/NGDY electrocatalysts for MOR with specific activity 154.2 mA cm-2 (1449.3 mA mgPt -1 ), 29 mA cm-2 (296 mA mgPt -1 ) and 22 mA cm-2 (110 mA mgPt -1 ) in alkaline, acid, and neutral solutions. The specific activity of Pt/NGDY is 9 times larger than Pt/C in alkaline solution. Density functional theory (DFT) calculations confirm that the incorporation of electronegativity nitrogen atoms can increase the high coverage of Pt to achieve a unique atomic state, in which the shared contributions of different Pt sites reach the balance between the electroactivity and the stability to guarantee the higher performance of MOR and durability with superior anti-poisoning effect.
Collapse
Affiliation(s)
- Lan Hui
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yurui Xue
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- Science Center for Material Creation and Energy ConversionSchool of Chemistry and Chemical EngineeringShandong UniversityJinan250100P. R. China
| | - Chengyu Xing
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Yuxin Liu
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yuncheng Du
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Yan Fang
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Huidi Yu
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Bolong Huang
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SARP. R. China
| | - Yuliang Li
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
7
|
Wang Z, Qi L, Zheng Z, Xue Y, Li Y. 2D Graphdiyne: A Rising Star on the Horizon of Energy Conversion. Chem Asian J 2021; 16:3259-3271. [PMID: 34467664 DOI: 10.1002/asia.202100858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Indexed: 12/20/2022]
Abstract
Two-dimensional (2D) graphdiyne (GDY), a rapidly rising star on the horizon of carbon materials, is a new carbon allotrope featuring sp- and sp2 -cohybridized carbon atoms and 2D one-atom-thick network. Since the first successful synthesis of GDY by Professor Li's group in 2010, GDY has attached great interests from both scientific and industrial viewpoints based on its unique structure and physicochemical properties, which provides a fertile ground for applications in various fields including electrocatalysis, energy conversion, energy storage and optoelectronic devices. In this work, various potential properties of the GDY-based electrocatalysts and their recent advances in energy conversion are reviewed, including atomic catalysts, heterogeneous catalysts, and metal-free catalysts. The critical role of GDY in improving catalytic activity and stability is analyzed. The perspectives of the challenges and opportunities faced by GDY-based materials for energy conversion are also outlined.
Collapse
Affiliation(s)
- Zhongqiang Wang
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Lu Qi
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Zhiqiang Zheng
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Yurui Xue
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Yuliang Li
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China.,Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Model MoS2@ZIF-71 interface acts as a highly active and selective electrocatalyst for catalyzing ammonia synthesis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|