1
|
Lončarić D, Movahedifar F, Štoček JR, Dračínský M, Cvačka J, Guan S, Bythell BJ, Císařová I, Masson E, Kaleta J. Solvent-controlled formation of alkali and alkali-earth-secured cucurbituril/guest trimers. Chem Sci 2023; 14:9258-9266. [PMID: 37712024 PMCID: PMC10498720 DOI: 10.1039/d3sc02032k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
Cucurbit[7]uril (CB[7]) encapsulates adamantyl and trimethylsilyl substituents of positively charged guests in dimethyl sulfoxide (DMSO). Unlike in water or deuterium oxide, addition of a selection of alkali and alkali-earth cations with van der Waals radii between 1.0 and 1.4 Å (Na+, K+, Ca2+, Sr2+, Ba2+ and Eu3+) to the CB[7]/guest complexes triggers their cation-mediated trimerization, a process that is very slow on the nuclear magnetic resonance (NMR) time scale. Smaller (Li+, Mg2+) or larger cations (Rb+, Cs+ or NH4+) are inert. The trimers display extensive CH-O interactions between the equatorial and pseudo-equatorial hydrogens of CB[7] and the carbonyl rim of the neighboring CB[7] unit in the trimer, and a deeply nested cation between the three interacting carbonylated CB[7] rims; a counteranion is likely perched in the shallow cavity formed by the three outer walls of CB[7] in the trimer. Remarkably, a guest must occupy the cavity of CB[7] for trimerization to take place. Using a combination of semi-empirical and density functional theory techniques in conjunction with continuum solvation models, we showed that trimerization is favored in DMSO, and not in water, because the penalty for the partial desolvation of three of the six CB[7] portals upon aggregation into a trimer is less unfavorable in DMSO compared to water.
Collapse
Affiliation(s)
- Doroteja Lončarić
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 160 00 Prague 6 Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague 128 40 Prague 2 Czech Republic
| | - Fahimeh Movahedifar
- Department of Chemistry and Biochemistry, Ohio University Athens Ohio 45701 USA
| | - Jakub Radek Štoček
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 160 00 Prague 6 Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague 128 40 Prague 2 Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 160 00 Prague 6 Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 160 00 Prague 6 Czech Republic
| | - Shanshan Guan
- Department of Chemistry and Biochemistry, Ohio University Athens Ohio 45701 USA
| | - Benjamin J Bythell
- Department of Chemistry and Biochemistry, Ohio University Athens Ohio 45701 USA
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague 128 40 Prague 2 Czech Republic
| | - Eric Masson
- Department of Chemistry and Biochemistry, Ohio University Athens Ohio 45701 USA
| | - Jiří Kaleta
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 160 00 Prague 6 Czech Republic
| |
Collapse
|
2
|
Li C, Manick A, Zhao Y, Liu F, Chatelet B, Rosas R, Siri D, Gigmes D, Monnier V, Charles L, Broggi J, Liu S, Martinez A, Kermagoret A, Bardelang D. Sequential Formation of Heteroternary Cucurbit[10]uril (CB[10]) Complexes. Chemistry 2022; 28:e202201656. [PMID: 35980006 PMCID: PMC9826255 DOI: 10.1002/chem.202201656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 01/11/2023]
Abstract
The globular and monocationic guest molecule trimethyl-azaphosphatrane (AZAP, a protonated Verkade superbase) was shown to form a host:guest 1 : 1 complex with the cucurbit[10]uril (CB[10]) macrocycle in water. Molecular dynamics calculations showed that CB[10] adopts an 8-shape with AZAP occupying the majority of the internal space, CB[10] contracting around AZAP and leaving a significant part of the cavity unoccupied. This residual space was used to co-include planar and monocationic co-guest (CG) molecules, affording heteroternary CB[10]⋅AZAP⋅CG complexes potentially opening new perspectives in supramolecular chemistry.
Collapse
Affiliation(s)
- Chunyang Li
- Aix Marseille Univ, CNRS Centrale Marseille, iSm2 UMR7313, AMUTech13397MarseilleFrance
- School of Materials Science and EngineeringSichuan University of Science & EngineeringZigong643000P. R. China
- Material Corrosion and Protection Key Laboratory of Sichuan ProvinceSichuan University of Science & EngineeringZigong643000P. R. China
| | - Anne‐Doriane Manick
- Aix Marseille Univ, CNRS Centrale Marseille, iSm2 UMR7313, AMUTech13397MarseilleFrance
| | - Yuxi Zhao
- Aix Marseille Univ, CNRS, ICR, AMUTech13397MarseilleFrance
| | - Fengbo Liu
- School of Chemistry and Chemical EngineeringWuhan University of Science and TechnologyWuhan430081P. R. China
| | - Bastien Chatelet
- Aix Marseille Univ, CNRS Centrale Marseille, iSm2 UMR7313, AMUTech13397MarseilleFrance
| | - Roselyne Rosas
- Aix Marseille Univ, CNRS, SpectropoleFR 1739MarseilleFrance
| | - Didier Siri
- Aix Marseille Univ, CNRS, ICR, AMUTech13397MarseilleFrance
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, ICR, AMUTech13397MarseilleFrance
| | | | | | - Julie Broggi
- Aix Marseille Univ, CNRS, ICR, AMUTech13397MarseilleFrance
| | - Simin Liu
- School of Chemistry and Chemical EngineeringWuhan University of Science and TechnologyWuhan430081P. R. China
| | - Alexandre Martinez
- Aix Marseille Univ, CNRS Centrale Marseille, iSm2 UMR7313, AMUTech13397MarseilleFrance
| | | | | |
Collapse
|
3
|
Yang MX, Luo Y, Zhang W, Lin WH, He J, Shan PH, Tao Z, Xiao X. Cucurbit[10]uril-mediated Supramolecular Assembly for Optically Tunable Dimers and Near White-light Emissive Materials. Chem Asian J 2022; 17:e202200378. [PMID: 35578824 DOI: 10.1002/asia.202200378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/01/2022] [Indexed: 11/10/2022]
Abstract
Cucurbit[10]uril (Q[10]), the cucurbit[ n ]uril with the greatest cavity, exhibits several new features in the development of the host-guest complex. Thus, based on Q[10] and π-conjugated molecule, oligo(p-phenylenevinylene) derivative (OPVCOOH), the host-guest complexes with three different interaction ratios of 1:2, 2:2, and 3:2 assemblies (Q[10]: guest) were fabricated. Depending on the host/guest ratio, the emission color of these complexes ranged from blue to yellow-green. The extra Fe 2+ coordinated with a bare carboxyl group of the Q[10]-OPVCOOH (3:2) assembly, obstructing its rotaxane structure and forming Q[10]-OPVCOOH-Fe 2+ assembly, which may be used as a coating for near-white LED bulbs.
Collapse
Affiliation(s)
- Mao-Xia Yang
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, CHINA
| | - Yang Luo
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, guiyang, guizhou,china, 550025, guizhou,china, CHINA
| | - Wei Zhang
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, CHINA
| | - Wen-Hao Lin
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, CHINA
| | - Jiao He
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, CHINA
| | - Pei-Hui Shan
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, CHINA
| | - Zhu Tao
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, CHINA
| | - Xin Xiao
- Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, 550025, Guiyang, CHINA
| |
Collapse
|
4
|
Soavi G, Pedrini A, Devi Das A, Terenziani F, Pinalli R, Hickey N, Medagli B, Geremia S, Dalcanale E. Encapsulation of Trimethine Cyanine in Cucurbit[8]uril: Solution versus Solid‐State Inclusion Behavior. Chemistry 2022; 28:e202200185. [PMID: 35201658 PMCID: PMC9313864 DOI: 10.1002/chem.202200185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/10/2022]
Abstract
Inclusion of polymethine cyanine dyes in the cavity of macrocyclic receptors is an effective strategy to alter their absorption and emission behavior in aqueous solution. In this paper, the effect of the host‐guest interaction between cucurbit[8]uril (CB[8]) and a model trimethine indocyanine (Cy3) on dye spectral properties and aggregation in water is investigated. Solution studies, performed by a combination of spectroscopic and calorimetric techniques, indicate that the addition of CB[8] disrupts Cy3 aggregates, leading to the formation of a 1 : 1 host‐guest complex with an association constant of 1.5×106 M−1. At concentrations suitable for NMR experiments, the slow formation of a supramolecular polymer was observed, followed by precipitation. Single crystals X‐ray structure elucidation confirmed the formation of a polymer with 1 : 1 stoichiometry in the solid state.
Collapse
Affiliation(s)
- Giuseppe Soavi
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Alessandro Pedrini
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Anjali Devi Das
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Francesca Terenziani
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Roberta Pinalli
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Neal Hickey
- Centre of Excellence in Biocrystallography Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Barbara Medagli
- Centre of Excellence in Biocrystallography Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Silvano Geremia
- Centre of Excellence in Biocrystallography Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Enrico Dalcanale
- Department of Chemistry Life Science and Environmental Sustainability University of Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| |
Collapse
|
5
|
Bhaumik SK, Biswas R, Banerjee S. Cucurbituril Based Luminescent Materials in Aqueous Media and Solid State. Chem Asian J 2021; 16:2195-2210. [PMID: 34159742 DOI: 10.1002/asia.202100594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Indexed: 11/07/2022]
Abstract
Cucurbit[n]urils, the pumpkin shaped macrocyclic host molecules possessing a hydrophobic cavity and two identical carbonyl portals, have drawn a lot of attention in recent years due to their high-affinity yet dynamic molecular recognition properties in water. The reversible and stimuli-responsive nature of their host-guest complexes imparts "smart" features leading to materials with intriguing optical, mechanical and morphological properties. In this review, we focus on the design of cucurbituril based luminescent materials in aqueous media as well in solid or film state. The design principles of fluorescent complexes, small assemblies as well as supramolecular polymers along with their stimuli-responsive properties and applications in diverse areas such as optoelectronic devices, light harvesting, anti-counterfeiting and information technology, cell imaging, etc are highlighted with selected examples from recent literature. We also discuss examples of room temperature phosphorescent materials derived from purely organic luminogens in the presence of cucurbiturils.
Collapse
Affiliation(s)
- Shubhra Kanti Bhaumik
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Rakesh Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Supratim Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|