1
|
Peil A, Zhan P, Duan X, Krahne R, Garoli D, M Liz-Marzán L, Liu N. Transformable Plasmonic Helix with Swinging Gold Nanoparticles. Angew Chem Int Ed Engl 2023; 62:e202213992. [PMID: 36423337 DOI: 10.1002/anie.202213992] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/25/2022]
Abstract
Control over multiple optical elements that can be dynamically rearranged to yield substantial three-dimensional structural transformations is of great importance to realize reconfigurable plasmonic nanoarchitectures with sensitive and distinct optical feedback. In this work, we demonstrate a transformable plasmonic helix system, in which multiple gold nanoparticles (AuNPs) can be directly transported by DNA swingarms to target positions without undergoing consecutive stepwise movements. The swingarms allow for programmable AuNP translocations in large leaps within plasmonic nanoarchitectures, giving rise to tailored circular dichroism spectra. Our work provides an instructive bottom-up solution to building complex dynamic plasmonic systems, which can exhibit prominent optical responses through cooperative rearrangements of the constituent optical elements with high fidelity and programmability.
Collapse
Affiliation(s)
- Andreas Peil
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany.,Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Pengfei Zhan
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany.,Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Xiaoyang Duan
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany.,Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Roman Krahne
- Instituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Denis Garoli
- Instituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Luis M Liz-Marzán
- CIC BiomaGUNE, Paseo Miramón 182, 20014, Donostia/San Sebastián, Spain.,Biomedical Networking Center, Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, 20014, Donostia/San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, 43009, Bilbao, Spain
| | - Na Liu
- 2. Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany.,Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| |
Collapse
|
2
|
Lv WY, Li CH, Yang FF, Li YF, Zhen SJ, Huang CZ. Sensitive Logic Nanodevices with Strong Response for Weak Inputs. Angew Chem Int Ed Engl 2022; 61:e202115561. [PMID: 34989066 DOI: 10.1002/anie.202115561] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 02/04/2023]
Abstract
Sensitive sensing is critical when developing new calculation systems with weak input signals (ISs). In this work, a "weak-inputs-strong-outputs" strategy was proposed to guide the construction of sensitive logic nanodevices by coupling an input-induced reversible DNA computing platform with a hybridization chain reaction-based signal amplifier. By rational design of the sequence of computing elements (CEs) so as to avoid cross-talking between ISs and signal amplifier, the newly formed logic nanodevices have good sensitivity to the weak ISs even at low concentrations of CEs, and are able to perform YES, OR, NAND, NOR, INHIBIT, INHIBIT-OR and number classifier operation, showing that the DNA calculation proceeds in dilute solution medium that greatly improves the calculation proficiency of logic nanodevices without the confinement of the lithography process in nanotechnology.
Collapse
Affiliation(s)
- Wen Yi Lv
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Chun Hong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Fei Fan Yang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Shu Jun Zhen
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
3
|
Lv WY, Li CH, Yang FF, Li YF, Zhen SJ, Huang CZ. Sensitive Logic Nanodevices with Strong Response for Weak Inputs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen Yi Lv
- Southwest University College of Pharmaceutical Sciences CHINA
| | - Chun Hong Li
- Southwest University College of Pharmaceutical Sciences CHINA
| | - Fei Fan Yang
- Southwest University College of Chemistry and Chemical Engineering CHINA
| | - Yuan Fang Li
- Southwest University College of Chemistry and Chemical Engineering CHINA
| | - Shu Jun Zhen
- Southwest University College of Chemistry and Chemical Engineering Tiansheng Road, BeiBei 400715 Chongqing CHINA
| | - Cheng Zhi Huang
- Southwest University College of Pharmaceutical Sciences CHINA
| |
Collapse
|
4
|
Perera T, Mallawaarachchi S, Premaratne M. Chiral Plasmonic Ellipsoids: An Extended Mie-Gans Model. J Phys Chem Lett 2021; 12:11214-11219. [PMID: 34761942 DOI: 10.1021/acs.jpclett.1c03144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mie-Gans theory optically characterizes ellipsoidal and by extension generally elongated nonchiral metal nanoparticles (MNPs) and is ubiquitous in verifying experimental results and predicting particle behavior. Recently, elongated chiral MNPs have garnered enthusiasm, but a theory to characterize their chiroptical behavior is lacking in the literature. In this Letter, we present an ab initio model for chiral ellipsoidal MNPs to address this shortcoming and demonstrate that it reduces to the general Mie-Gans model under nonchiral conditions, produces results that concur with state-of-the-art numerical simulations, and can accurately replicate recent experimental measurements. Furthermore, to gain physical insights, we analyze factors such as background medium permittivity and particle size that drive the chiroptical activity using two types of plasmonic chiral MNPs. We also demonstrate the utility of our model in metamaterial design. Generic features of our model can be extended to characterize similar elongated chiral MNPs, fueling many other variants of the current model.
Collapse
Affiliation(s)
- Tharaka Perera
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Sudaraka Mallawaarachchi
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Malin Premaratne
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
5
|
Niu R, Song C, Gao F, Fang W, Jiang X, Ren S, Zhu D, Su S, Chao J, Chen S, Fan C, Wang L. DNA Origami-Based Nanoprinting for the Assembly of Plasmonic Nanostructures with Single-Molecule Surface-Enhanced Raman Scattering. Angew Chem Int Ed Engl 2021; 60:11695-11701. [PMID: 33694256 DOI: 10.1002/anie.202016014] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/01/2021] [Indexed: 12/24/2022]
Abstract
Metallic nanocube ensembles exhibit tunable localized surface plasmon resonance to induce the light manipulation at the subwavelength scale. Nevertheless, precisely control anisotropic metallic nanocube ensembles with relative spatial directionality remains a challenge. Here, we report a DNA origami based nanoprinting (DOBNP) strategy to transfer the essential DNA strands with predefined sequences and positions to the surface of the gold nanocubes (AuNCs). These DNA strands ensured the specific linkages between AuNCs and gold nanoparticles (AuNPs) that generating the stereo-controlled AuNC-AuNP nanostructures (AANs) with controlled geometry and composition. By anchoring the single dye molecule in hot spot regions, the dramatic enhanced electromagnetic field aroused stronger surface enhanced Raman scattering (SERS) signal amplification. Our approach opens the opportunity for the fabrication of stereo-controlled metal nanostructures for designing highly sensitive photonic devices.
Collapse
Affiliation(s)
- Renjie Niu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chunyuan Song
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Fei Gao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Weina Fang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Xinyu Jiang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shaokang Ren
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Dan Zhu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shao Su
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jie Chao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shufen Chen
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
6
|
Niu R, Song C, Gao F, Fang W, Jiang X, Ren S, Zhu D, Su S, Chao J, Chen S, Fan C, Wang L. DNA Origami‐Based Nanoprinting for the Assembly of Plasmonic Nanostructures with Single‐Molecule Surface‐Enhanced Raman Scattering. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Renjie Niu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Chunyuan Song
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Fei Gao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Weina Fang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
| | - Xinyu Jiang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Shaokang Ren
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Dan Zhu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Shao Su
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Jie Chao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Shufen Chen
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| |
Collapse
|
7
|
Implementation of biomolecular logic gate using DNA and electrically doped GaAs nano-pore: a first principle paradigm. J Mol Model 2021; 27:23. [PMID: 33410979 DOI: 10.1007/s00894-020-04623-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
One of the emerging areas of today's research arena is molecular modeling and molecular computing. The molecular logic gate can be theoretically implemented from single-strand DNA which consists of four basic nucleobases. In this study, the electronic transmission characteristics of DNA chain are investigated to form the logic gate. This biomolecular single-strand DNA chain is passed through an electrically doped gallium-arsenide nano-pore to achieve reasonably improved transmission along <1 1 1> direction. Current-voltage characteristic and device density of states with HOMO-LUMO plot of the device are explained along with the conductivity of the device to confirm the characteristics of some important logic gates like a universal gate. Ultimately the property of resistivity proves the law of Boolean logic of AND gate and universal logic gate, viz., NAND and NOR gate. All the electronic properties of the Boolean logic gate are explored based on the first principle approach by non-equilibrium Green's function coupled with density functional theory in room temperature.
Collapse
|