1
|
Song Y, Zhang Z, Cao Y, Yu Z. Stimulus-Responsive Amino Acids Behind In Situ Assembled Bioactive Peptide Materials. Chembiochem 2023; 24:e202200497. [PMID: 36278304 DOI: 10.1002/cbic.202200497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/18/2022] [Indexed: 02/04/2023]
Abstract
In situ self-assembly of peptides into well-defined nanostructures represents one of versatile strategies for creation of bioactive materials within living cells with great potential in disease diagnosis and treatment. The intimate relationship between amino acid sequences and the assembling propensity of peptides has been thoroughly elucidated over the past few decades. This has inspired development of various controllable self-assembling peptide systems based on stimuli-responsive naturally occurring or non-canonical amino acids, including redox-, pH-, photo-, enzyme-responsive amino acids. This review attempts to summarize the recent progress achieved in manipulating in situ self-assembly of peptides by controllable reactions occurring to amino acids. We will highlight the systems containing non-canonical amino acids developed in our laboratory during the past few years, primarily including acid/enzyme-responsive 4-aminoproline, redox-responsive (seleno)methionine, and enzyme-responsive 2-nitroimidazolyl alanine. Utilization of the stimuli-responsive assembling systems in creation of bioactive materials will be specifically introduced to emphasize their advantages for addressing the concerns lying in disease theranostics. Eventually, we will provide the perspectives for the further development of stimulus-responsive amino acids and thereby demonstrating their great potential in development of next-generation biomaterials.
Collapse
Affiliation(s)
- Yanqiu Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Yawei Cao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China.,Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin, 300308, P. R. China
| |
Collapse
|
2
|
Duan X, Zhang GQ, Ji S, Zhang Y, Li J, Ou H, Gao Z, Feng G, Ding D. Activatable Persistent Luminescence from Porphyrin Derivatives and Supramolecular Probes with Imaging-Modality Transformable Characteristics for Improved Biological Applications. Angew Chem Int Ed Engl 2022; 61:e202116174. [PMID: 35030286 DOI: 10.1002/anie.202116174] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 12/22/2022]
Abstract
Persistent luminescence without excitation light and tissue autofluorescence interference holds great promise for biological applications, but is limited by available materials with long-wavelength emission and excellent clinical potential. Here, we report that porphyrin derivatives can emit near-infrared persistent luminescence over 60 min after cessation of excitation light or on interaction with peroxynitrite. A plausible mechanism of the successive oxidation of vinylene bonds was demonstrated. A supramolecular probe with a β-sheet structure was constructed to enhance the tumor targeting ability and the photoacoustic and persistent luminescence signals. Such probes featuring light-triggered function transformation from photoacoustic imaging to persistent luminescence imaging permit advanced image-guided cancer surgery. Furthermore, peroxynitrite-activated persistent luminescence of the supramolecular probe also enables rapid and precise screening of immunogenic cell death drugs.
Collapse
Affiliation(s)
- Xingchen Duan
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Guo-Qiang Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shenglu Ji
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yiming Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jun Li
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hanlin Ou
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhiyuan Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Guangxue Feng
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China
| |
Collapse
|
3
|
Dergham M, Lin S, Geng J. Supramolecular Self-Assembly in Living Cells. Angew Chem Int Ed Engl 2022; 61:e202114267. [PMID: 35037350 DOI: 10.1002/anie.202114267] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 12/17/2022]
Abstract
Supramolecular interactions rely on non-covalent forces, such as hydrophobic effects, hydrogen-bonding, and electrostatic interactions, which govern many intracellular biological pathways. In cellulo supramolecular self-assembly is mainly based on host-guest interactions, changes in pH, enzymes, and polymerization-induced self-assembly to accurately induce various unnatural reactions without disturbing natural biological processes. This process can produce synthetic biocompatible macromolecules to control cell properties and regulate biological functions, such as cell proliferation and differentiation. This Minireview focuses on the latest reports in the field of in cellulo supramolecular self-assembly and anticipates future advances regarding its activation in response to internal and external stimuli, such as pH changes, reactive oxygen species, and enzymes, as well as external light illumination.
Collapse
Affiliation(s)
- Mohamed Dergham
- Centre for Polymers in Medicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Nanshan, 518055, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Shanmeng Lin
- Centre for Polymers in Medicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Nanshan, 518055, China
| | - Jin Geng
- Centre for Polymers in Medicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Nanshan, 518055, China
| |
Collapse
|
4
|
Duan X, Zhang G, Ji S, Zhang Y, Li J, Ou H, Gao Z, Feng G, Ding D. Activatable Persistent Luminescence from Porphyrin Derivatives and Supramolecular Probes with Imaging‐Modality Transformable Characteristics for Improved Biological Applications**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xingchen Duan
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Guo‐Qiang Zhang
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Shenglu Ji
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Yiming Zhang
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Jun Li
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Hanlin Ou
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Zhiyuan Gao
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Guangxue Feng
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates School of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Dan Ding
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction Tianjin Stomatological Hospital The Affiliated Stomatological Hospital of Nankai University Tianjin 300041 China
| |
Collapse
|
5
|
Dergham M, Lin S, Geng J. Supramolecular Self‐assembly in Living Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohamed Dergham
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Biomedicine and Biotechnology CHINA
| | - Shanmeng Lin
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Biomedicine and Biotechnology CHINA
| | - Jin Geng
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Institute of Biomedicine and Biotechnology Xuyuan Road 518055 Shenzhen CHINA
| |
Collapse
|
6
|
Ji S, Li J, Duan X, Zhang J, Zhang Y, Song M, Li S, Chen H, Ding D. Targeted Enrichment of Enzyme‐Instructed Assemblies in Cancer Cell Lysosomes Turns Immunologically Cold Tumors Hot. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shenglu Ji
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences, Nankai University Tianjin 300071 China
- The Key Laboratory of Biomedical Materials School of Life Science and Technology Xinxiang Medical University Xinxiang 453003 China
| | - Jun Li
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences, Nankai University Tianjin 300071 China
| | - Xingchen Duan
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences, Nankai University Tianjin 300071 China
| | - Jingtian Zhang
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences, Nankai University Tianjin 300071 China
| | - Yufan Zhang
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences, Nankai University Tianjin 300071 China
| | - Mengqing Song
- The Key Laboratory of Biomedical Materials School of Life Science and Technology Xinxiang Medical University Xinxiang 453003 China
| | - Songge Li
- The Key Laboratory of Biomedical Materials School of Life Science and Technology Xinxiang Medical University Xinxiang 453003 China
| | - Hongli Chen
- The Key Laboratory of Biomedical Materials School of Life Science and Technology Xinxiang Medical University Xinxiang 453003 China
| | - Dan Ding
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences, Nankai University Tianjin 300071 China
| |
Collapse
|
7
|
Guo RC, Zhang XH, Fan PS, Song BL, Li ZX, Duan ZY, Qiao ZY, Wang H. In Vivo Self-Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization. Angew Chem Int Ed Engl 2021; 60:25128-25134. [PMID: 34549872 DOI: 10.1002/anie.202111839] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/23/2022]
Abstract
Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self-assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self-assembles in situ, which induces the aggregation of ALP and the protein-lipid phase separation on cell membrane. Consequently, KYp internalization is 2-fold enhanced compared to non-responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self-assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy.
Collapse
Affiliation(s)
- Ruo-Chen Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.,School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrongdao, Tianjin, 300130, China
| | - Xue-Hao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Peng-Sheng Fan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Ben-Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Zhi-Xiang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Zhong-Yu Duan
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrongdao, Tianjin, 300130, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
8
|
Guo R, Zhang X, Fan P, Song B, Li Z, Duan Z, Qiao Z, Wang H. In Vivo Self‐Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ruo‐Chen Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
- School of Chemical Engineering and Technology Hebei University of Technology No. 8 Guangrongdao Tianjin 300130 China
| | - Xue‐Hao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Peng‐Sheng Fan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Ben‐Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Zhi‐Xiang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Zhong‐Yu Duan
- School of Chemical Engineering and Technology Hebei University of Technology No. 8 Guangrongdao Tianjin 300130 China
| | - Zeng‐Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| |
Collapse
|
9
|
Ji S, Li J, Duan X, Zhang J, Zhang Y, Song M, Li S, Chen H, Ding D. Targeted Enrichment of Enzyme-Instructed Assemblies in Cancer Cell Lysosomes Turns Immunologically Cold Tumors Hot. Angew Chem Int Ed Engl 2021; 60:26994-27004. [PMID: 34643312 DOI: 10.1002/anie.202110512] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 01/10/2023]
Abstract
Lysosome-relevant cell death induced by lysosomal membrane permeabilization (LMP) has recently attracted increasing attention. However, nearly no studies show that currently available LMP inducers can evoke immunogenic cell death (ICD) or convert immunologically cold tumors to hot. Herein, we report a LMP inducer named TPE-Py-pYK(TPP)pY, which can respond to alkaline phosphatase (ALP), leading to formation of nanoassembies along with fluorescence and singlet oxygen turn-on. TPE-Py-pYK(TPP)pY tends to accumulate in ALP-overexpressed cancer cell lysosomes as well as induce LMP and rupture of lysosomal membranes to massively evoke ICD. Such LMP-induced ICD effectively converts immunologically cold tumors to hot as evidenced by abundant CD8+ and CD4+ T cells infiltration into the cold tumors. Exposure of ALP-catalyzed nanoassemblies in cancer cell lysosomes to light further intensifies the processes of LMP, ICD and cold-to-hot tumor conversion. This work thus builds a new bridge between lysosome-relevant cell death and cancer immunotherapy.
Collapse
Affiliation(s)
- Shenglu Ji
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China.,The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jun Li
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xingchen Duan
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingtian Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yufan Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mengqing Song
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Songge Li
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hongli Chen
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Tan W, Zhang Q, Wang J, Yi M, He H, Xu B. Enzymatic Assemblies of Thiophosphopeptides Instantly Target Golgi Apparatus and Selectively Kill Cancer Cells*. Angew Chem Int Ed Engl 2021; 60:12796-12801. [PMID: 33783926 PMCID: PMC8159897 DOI: 10.1002/anie.202102601] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/19/2021] [Indexed: 01/01/2023]
Abstract
Changing an oxygen atom of the phosphoester bond in phosphopeptides by a sulfur atom enables instantly targeting Golgi apparatus (GA) and selectively killing cancer cells by enzymatic self-assembly. Specifically, conjugating cysteamine S-phosphate to the C-terminal of a self-assembling peptide generates a thiophosphopeptide. Being a substrate of alkaline phosphatase (ALP), the thiophosphopeptide undergoes rapid ALP-catalyzed dephosphorylation to form a thiopeptide that self-assembles. The thiophosphopeptide enters cells via caveolin-mediated endocytosis and macropinocytosis and instantly accumulates in GA because of dephosphorylation and formation of disulfide bonds in Golgi by themselves and with Golgi proteins. Moreover, the thiophosphopeptide potently and selectively inhibits cancer cells (HeLa) with the IC50 (about 3 μM), which is an order of magnitude more potent than that of the parent phosphopeptide.
Collapse
Affiliation(s)
- Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Jiaqing Wang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| |
Collapse
|
11
|
Tan W, Zhang Q, Wang J, Yi M, He H, Xu B. Enzymatic Assemblies of Thiophosphopeptides Instantly Target Golgi Apparatus and Selectively Kill Cancer Cells**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Weiyi Tan
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Qiuxin Zhang
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Jiaqing Wang
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Meihui Yi
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Hongjian He
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Bing Xu
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|