1
|
Li G, Duclos C, Ricarte RG. Impact of a poly(ethylene glycol) corona block on drug encapsulation during polymerization induced self-assembly. SOFT MATTER 2024; 20:7214-7226. [PMID: 39224056 DOI: 10.1039/d4sm00654b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Polymerization induced self-assembly (PISA) provides a facile platform for encapsulating therapeutics within block copolymer nanoparticles. Performing PISA in the presence of a hydrophobic drug alters both the nanoparticle shape and encapsulation efficiency. While previous studies primarily examined the interactions between the drug and hydrophobic core block, this work explores the impact of the hydrophilic corona block on encapsulation. Poly(ethylene glycol) (PEG) and poly(2-hydroxypropyl methacrylate) (PHPMA) are used as the model corona and core blocks, respectively, and phenylacetic acid (PA) is employed as the model drug. Attachment of a dithiobenzoate end group to the PEG homopolymer - transforming it into a macroscopic reversible addition-fragmentation chain transfer agent - causes the polymer to form a small number of nanoscopic aggregates in solution. Adding PA to the PEG solution encourages further aggregation and macroscopic phase separation. During the PISA of PEG-PHPMA block copolymers, inclusion of PA in the reaction mixture promotes faster nucleation of spherical micelles. Although increasing the targeted PA loading from 0 to 20 mg mL-1 does not affect the micelle size or shape, it alters the drug spatial distribution within the PISA microenvironment. PA partitions into either PEG-PHPMA micelles, deuterium oxide, or other polymeric species - including PEG aggregates and unimer chains. Increasing the targeted PA loading changes the fraction of drug within each encapsulation site. This work indicates that the corona block plays a critical role in dictating drug encapsulation during PISA.
Collapse
Affiliation(s)
- Guanrui Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA.
| | - Cassie Duclos
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA.
| | - Ralm G Ricarte
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA.
| |
Collapse
|
2
|
Liu H, Wang H. From cells to subcellular organelles: Next-generation cancer therapy based on peptide self-assembly. Adv Drug Deliv Rev 2024; 209:115327. [PMID: 38703895 DOI: 10.1016/j.addr.2024.115327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Due to the editability, functionality, and excellent biocompatibility of peptides, in situ self-assembly of peptides in cells is a powerful strategy for biomedical applications. Subcellular organelle targeting of peptides assemblies enables more precise drug delivery, enhances selectivity to disease cells, and mitigates drug resistance, providing an effective strategy for disease diagnosis and therapy. This reviewer first introduces the triggering conditions, morphological changes, and intracellular locations of self-assembling peptides. Then, the functions of peptide assemblies are summarized, followed by a comprehensive understanding of the interactions between peptide assemblies and subcellular organelles. Finally, we provide a brief outlook and the remaining challenges in this field.
Collapse
Affiliation(s)
- Huayang Liu
- Department of Chemistry, School of Science, Westlake University, No. 600 Dunyu Road, Sandun Town, Hangzhou 310024, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Huaimin Wang
- Department of Chemistry, School of Science, Westlake University, No. 600 Dunyu Road, Sandun Town, Hangzhou 310024, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
3
|
Bu Q, Li P, Xia Y, Hu D, Li W, Shi D, Song K. Design, Synthesis, and Biomedical Application of Multifunctional Fluorescent Polymer Nanomaterials. Molecules 2023; 28:molecules28093819. [PMID: 37175229 PMCID: PMC10179976 DOI: 10.3390/molecules28093819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Luminescent polymer nanomaterials not only have the characteristics of various types of luminescent functional materials and a wide range of applications, but also have the characteristics of good biocompatibility and easy functionalization of polymer nanomaterials. They are widely used in biomedical fields such as bioimaging, biosensing, and drug delivery. Designing and constructing new controllable synthesis methods for multifunctional fluorescent polymer nanomaterials with good water solubility and excellent biocompatibility is of great significance. Exploring efficient functionalization methods for luminescent materials is still one of the core issues in the design and development of new fluorescent materials. With this in mind, this review first introduces the structures, properties, and synthetic methods regarding fluorescent polymeric nanomaterials. Then, the functionalization strategies of fluorescent polymer nanomaterials are summarized. In addition, the research progress of multifunctional fluorescent polymer nanomaterials for bioimaging is also discussed. Finally, the synthesis, development, and application fields of fluorescent polymeric nanomaterials, as well as the challenges and opportunities of structure-property correlations, are comprehensively summarized and the corresponding perspectives are well illustrated.
Collapse
Affiliation(s)
- Qingpan Bu
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Ping Li
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Yunfei Xia
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Die Hu
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Wenjing Li
- School of Education, Changchun Normal University, Changchun 130032, China
| | - Dongfang Shi
- Institute of Science, Technology and Innovation, Changchun Normal University, Changchun 130032, China
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China
- Institute of Science, Technology and Innovation, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
4
|
Zhang W, Chang Z, Bai W, Hong C. Greatly Enhanced Accessibility and Reproducibility of Worm‐like Micelles by In Situ Crosslinking Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2022; 61:e202211792. [DOI: 10.1002/anie.202211792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Wen‐Jian Zhang
- Institute of Physical Science and Information Technology Anhui University Hefei 230601, Anhui P. R. China
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026, Anhui P. R. China
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province Anhui University Hefei 230601, Anhui P. R. China
| | - Zi‐Xuan Chang
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026, Anhui P. R. China
| | - Wei Bai
- Institute of Physical Science and Information Technology Anhui University Hefei 230601, Anhui P. R. China
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province Anhui University Hefei 230601, Anhui P. R. China
| | - Chun‐Yan Hong
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026, Anhui P. R. China
| |
Collapse
|
5
|
Zhang WJ, Chang ZX, Bai W, Hong CY. Greatly Enhanced Accessibility and Reproducibility of Worm‐like Micelles by in situ Crosslinking Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wen-Jian Zhang
- Anhui University Institute of Physical Science and Information Technology 合肥 CHINA
| | - Zi-Xuan Chang
- University of Science and Technology of China Department of Polymer Science and Engineering CHINA
| | - Wei Bai
- Anhui University Institute of Physical Science and Information Technology CHINA
| | - Chun-Yan Hong
- University of Science and Technology of China Department of Polymer Science and Engineering Jinzhai Road 96 230026 Hefei CHINA
| |
Collapse
|
6
|
Elgharbawy AS, Ali RM. A comprehensive review of the polyolefin composites and their properties. Heliyon 2022; 8:e09932. [PMID: 35859640 PMCID: PMC9293630 DOI: 10.1016/j.heliyon.2022.e09932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/06/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Polyolefins are formed by the polymerization of olefin monomer units such as ethylene, styrene, and vinyl chloride. Polyolefins composites are a mixture of polyolefins with different types of other polymers, reinforcements, or fillers. Blending neat polyolefins with composites widens its uses in various applications that require high efficiency in the areas of environmental degradation, impact resistance, fire and chemical resistance, or strength. In this review, the effects of blending neat polyolefin with other types of polymers or wood fibers on the properties of neat polymers have been represented. Moreover, this review reveals the importance of a coupling agent or compatibilizer in the improvement of the polyolefin’s compatibility with the other added components.
Collapse
Affiliation(s)
- Abdallah S Elgharbawy
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, 21526, Alexandria, Egypt.,The Egyptian Ethylene and Derivatives Company (ETHYDCO), Alexandria, Egypt
| | - Rehab M Ali
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| |
Collapse
|
7
|
Zhu C, Nicolas J. (Bio)degradable and Biocompatible Nano-Objects from Polymerization-Induced and Crystallization-Driven Self-Assembly. Biomacromolecules 2022; 23:3043-3080. [PMID: 35707964 DOI: 10.1021/acs.biomac.2c00230] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) techniques have emerged as powerful approaches to produce a broad range of advanced synthetic nano-objects with high potential in biomedical applications. PISA produces nano-objects of different morphologies (e.g., spheres, vesicles and worms), with high solids content (∼10-50 wt %) and without additional surfactant. CDSA can finely control the self-assembly of block copolymers and readily forms nonspherical crystalline nano-objects and more complex, hierarchical assemblies, with spatial and dimensional control over particle length or surface area, which is typically difficult to achieve by PISA. Considering the importance of these two assembly techniques in the current scientific landscape of block copolymer self-assembly and the craze for their use in the biomedical field, this review will focus on the advances in PISA and CDSA to produce nano-objects suitable for biomedical applications in terms of (bio)degradability and biocompatibility. This review will therefore discuss these two aspects in order to guide the future design of block copolymer nanoparticles for future translation toward clinical applications.
Collapse
Affiliation(s)
- Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
8
|
Guo RC, Zhang XH, Fan PS, Song BL, Li ZX, Duan ZY, Qiao ZY, Wang H. In Vivo Self-Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization. Angew Chem Int Ed Engl 2021; 60:25128-25134. [PMID: 34549872 DOI: 10.1002/anie.202111839] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/23/2022]
Abstract
Therapeutic peptides have been widely concerned, but their efficacy is limited by the inability to penetrate cell membranes, which is a key bottleneck in peptide drugs delivery. Herein, an in vivo self-assembly strategy is developed to induce phase separation of cell membrane that improves the peptide drugs internalization. A phosphopeptide KYp is synthesized, containing an anticancer peptide [KLAKLAK]2 (K) and a responsive moiety phosphorylated Y (Yp). After interacting with alkaline phosphatase (ALP), KYp can be dephosphorylated and self-assembles in situ, which induces the aggregation of ALP and the protein-lipid phase separation on cell membrane. Consequently, KYp internalization is 2-fold enhanced compared to non-responsive peptide, and IC50 value of KYp is approximately 5 times lower than that of free peptide. Therefore, the in vivo self-assembly induced phase separation on cell membrane promises a new strategy to improve the drug delivery efficacy in cancer therapy.
Collapse
Affiliation(s)
- Ruo-Chen Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.,School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrongdao, Tianjin, 300130, China
| | - Xue-Hao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Peng-Sheng Fan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Ben-Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Zhi-Xiang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Zhong-Yu Duan
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrongdao, Tianjin, 300130, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
9
|
Guo R, Zhang X, Fan P, Song B, Li Z, Duan Z, Qiao Z, Wang H. In Vivo Self‐Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ruo‐Chen Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
- School of Chemical Engineering and Technology Hebei University of Technology No. 8 Guangrongdao Tianjin 300130 China
| | - Xue‐Hao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Peng‐Sheng Fan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Ben‐Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Zhi‐Xiang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Zhong‐Yu Duan
- School of Chemical Engineering and Technology Hebei University of Technology No. 8 Guangrongdao Tianjin 300130 China
| | - Zeng‐Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nano-science National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| |
Collapse
|
10
|
Shen L, Lu Q, Chen Q, Li Y, Wu X, Shen J. Constructing Cylindrical Nanostructures Via Directional Morphology Evolution Induced by Seeded Polymerization. Macromol Rapid Commun 2021; 42:e2100001. [PMID: 33544922 DOI: 10.1002/marc.202100001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/27/2021] [Indexed: 12/29/2022]
Abstract
Herein, spindle-shaped block copolymer (BCP) nanoparticles are used in seeded polymerization of methyl methacrylate as a novel approach to generating cylindrical nanostructures. The chain-extension of BCP seeds by an amorphous coil-type polymer within the seed core composed of semifluorinated liquid-crystalline blocks triggers the deforming, stretching, and directional growth of the seeds along the long axis, eventually leads to nanorods.
Collapse
Affiliation(s)
- Liangliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Qunzan Lu
- Engineering Research Center of Clinical Functional Materials and Diagnosis and Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road, Longwan District, Wenzhou, 325001, P. R. China
| | - Qiumeng Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Yahui Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Xuan Wu
- Engineering Research Center of Clinical Functional Materials and Diagnosis and Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road, Longwan District, Wenzhou, 325001, P. R. China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, P. R. China.,Engineering Research Center of Clinical Functional Materials and Diagnosis and Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road, Longwan District, Wenzhou, 325001, P. R. China
| |
Collapse
|