1
|
Pearson JW, Hou TR, Golijanin J, Stewart PI, Choi ES, Gabbey AL, West MS, Rousseaux SAL. Ni-Catalyzed Reductive 1,2-Alkylarylation of Alkenes for the Synthesis of Spirocyclic γ-Lactams. Org Lett 2024; 26:5560-5565. [PMID: 38915176 DOI: 10.1021/acs.orglett.4c01981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
An intermolecular nickel-catalyzed reductive 1,2-alkylarylation of acrylates with cyclopropylamine NHP esters and aryl iodides is reported. This operationally simple protocol provides direct access to 1-alkylcyclopropylamine scaffolds. The mild conditions are compatible with four-membered α-amino strained rings as well as five- and six-membered ring systems. The products undergo cyclization to access α-arylated spirocyclic γ-lactams─a motif present in several pharmaceuticals.
Collapse
Affiliation(s)
- James W Pearson
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Teh Ren Hou
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jelena Golijanin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Patricia I Stewart
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Eun Seo Choi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Alexis L Gabbey
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Michael S West
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Sophie A L Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
2
|
Wang H, Han W, Noble A, Aggarwal VK. Dual Nickel/Photoredox-Catalyzed Site-Selective Cross-Coupling of 1,2-Bis-Boronic Esters Enabled by 1,2-Boron Shifts. Angew Chem Int Ed Engl 2022; 61:e202207988. [PMID: 35779000 PMCID: PMC9543306 DOI: 10.1002/anie.202207988] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Site-selective transition-metal-catalyzed mono-deboronative cross-couplings of 1,2-bis-boronic esters are valuable methods for the synthesis of functionalized organoboron compounds. However, such cross-couplings are limited to reaction of the sterically less hindered primary boronic ester. Herein, we report a nickel/photoredox-catalyzed mono-deboronative arylation of 1,2-bis-boronic esters that is selective for coupling of the more sterically hindered secondary/tertiary position. This is achieved by taking advantage of a 1,2-boron shift of primary β-boryl radicals to the thermodynamically favored secondary/tertiary radicals, which are subsequently intercepted by the nickel catalyst to enable arylation. The mild conditions are amenable to a broad range of aryl halides to give β-aryl boronic ester products in good yields and with high regioselectivity. This method also allows stereodivergent coupling of cyclic cis-1,2-bis-boronic esters to give trans-substituted products.
Collapse
Affiliation(s)
- Hui Wang
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- Key Laboratory of Functional Molecular Solids (Ministry of Education)Anhui Key Laboratory of Molecular Based MaterialsCollege of Chemistry and Materials ScienceAnhui Normal UniversityWuhu241002China
| | - Wangyujing Han
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
3
|
Liu K, Studer A. Formal β-C-H Arylation of Aldehydes and Ketones by Cooperative Nickel and Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206533. [PMID: 35656716 PMCID: PMC9400853 DOI: 10.1002/anie.202206533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 01/19/2023]
Abstract
α-C-H-functionalization of ketones and aldehydes has been intensively explored in organic synthesis. The functionalization of unactivated β-C-H bonds in such carbonyl compounds is less well investigated and developing a general method for their β-C-H arylation remains challenging. Herein we report a method that uses cooperative nickel and photoredox catalysis for the formal β-C-H arylation of aldehydes and ketones with (hetero)aryl bromides. The method features mild conditions, remarkable scope and wide functional group tolerance. Importantly, the introduced synthetic strategy also allows the β-alkenylation, β-alkynylation and β-acylation of aldehydes under similar conditions. Mechanistic studies revealed that this transformation proceeds through a single electron oxidation/Ni-mediated coupling/reductive elimination cascade.
Collapse
Affiliation(s)
- Kun Liu
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| |
Collapse
|
4
|
Wang H, Han W, Noble A, Aggarwal VK. Dual Nickel/Photoredox‐Catalyzed Site‐Selective Cross‐Coupling of 1,2‐Bis‐Boronic Esters Enabled by 1,2‐Boron Shifts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Wang
- University of Bristol School of Chemistry School of Chemistry UNITED KINGDOM
| | - Wangyujing Han
- University of Bristol School of Chemistry School of Chemistry UNITED KINGDOM
| | - Adam Noble
- University of Bristol School of Chemistry School of Chemistry UNITED KINGDOM
| | | |
Collapse
|
5
|
Jiang HM, Sun Q, Jiang JP, Qin JH, Ouyang XH, Song RJ. Copper‐Catalyzed Oxidative 1,2‐Alkylarylation of Styrenes with Unactivated C(sp3)‐H Alkanes and Electron‐Rich Aromatics via C(sp3)‐H/C(sp2)‐H Functionalization. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Liu K, Studer A. Formal β‐C‐H Arylation of Aldehydes and Ketones by Cooperative Nickel and Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kun Liu
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry and pharmacy GERMANY
| | - Armido Studer
- Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut Corrensstrasse 40 48149 Münster GERMANY
| |
Collapse
|
7
|
Dhungana RK, Sapkota RR, Wickham LM, Niroula D, Shrestha B, Giri R. Ni‐Catalyzed Arylbenzylation of Alkenylarenes: Kinetic Studies Reveal Autocatalysis by ZnX
2
**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Roshan K. Dhungana
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Rishi R. Sapkota
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Laura M. Wickham
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Doleshwar Niroula
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Bijay Shrestha
- Current address: Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Ramesh Giri
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| |
Collapse
|
8
|
Dhungana RK, Sapkota RR, Wickham LM, Niroula D, Shrestha B, Giri R. Ni-Catalyzed Arylbenzylation of Alkenylarenes: Kinetic Studies Reveal Autocatalysis by ZnX 2 *. Angew Chem Int Ed Engl 2021; 60:22977-22982. [PMID: 34427992 PMCID: PMC8490319 DOI: 10.1002/anie.202110459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 11/08/2022]
Abstract
We report a Ni-catalyzed regioselective arylbenzylation of alkenylarenes with benzyl halides and arylzinc reagents. The reaction furnishes differently substituted 1,1,3-triarylpropyl structures that are reminiscent of the cores of oligoresveratrol natural products. The reaction is also compatible for the coupling of internal alkenes, secondary benzyl halides and variously substituted arylzinc reagents. Kinetic studies reveal that the reaction proceeds with a rate-limiting single-electron-transfer process and is autocatalyzed by in-situ-generated ZnX2 . The reaction rate is amplified by a factor of three through autocatalysis upon addition of ZnX2 .
Collapse
Affiliation(s)
| | | | | | | | | | - Ramesh Giri
- Department of Chemistry Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
9
|
Dhungana RK, Aryal V, Niroula D, Sapkota RR, Lakomy MG, Giri R. Nickel‐Catalyzed Regioselective Alkenylarylation of γ,δ‐Alkenyl Ketones via Carbonyl Coordination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Roshan K. Dhungana
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Vivek Aryal
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Doleshwar Niroula
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Rishi R. Sapkota
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Margaret G. Lakomy
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Ramesh Giri
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
10
|
Dhungana RK, Aryal V, Niroula D, Sapkota RR, Lakomy MG, Giri R. Nickel-Catalyzed Regioselective Alkenylarylation of γ,δ-Alkenyl Ketones via Carbonyl Coordination. Angew Chem Int Ed Engl 2021; 60:19092-19096. [PMID: 34115911 PMCID: PMC8373804 DOI: 10.1002/anie.202104871] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/27/2021] [Indexed: 11/07/2022]
Abstract
We disclose a nickel-catalyzed reaction, which enabled us to difunctionalize unactivated γ,δ-alkenes in ketones with alkenyl triflates and arylboronic esters. The reaction was made feasible by the use of 5-chloro-8-hydroxyquinoline as a ligand along with NiBr2 ⋅DME as a catalyst and LiOtBu as base. The reaction proceeded with a wide range of cyclic, acyclic, endocyclic and exocyclic alkenyl ketones, and electron-rich and electron-deficient arylboronate esters. The reaction also worked with both cyclic and acyclic alkenyl triflates. Control experiments indicate that carbonyl coordination is required for the reaction to proceed.
Collapse
Affiliation(s)
- Roshan K. Dhungana
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Vivek Aryal
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Doleshwar Niroula
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rishi R. Sapkota
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Margaret G. Lakomy
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ramesh Giri
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
11
|
Xu S, Chen H, Zhou Z, Kong W. Three-Component Alkene Difunctionalization by Direct and Selective Activation of Aliphatic C-H Bonds. Angew Chem Int Ed Engl 2021; 60:7405-7411. [PMID: 33300196 DOI: 10.1002/anie.202014632] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/29/2020] [Indexed: 11/07/2022]
Abstract
Catalytic alkene difunctionalization is a powerful strategy for the rapid assembly of complex molecules and has wide range of applications in synthetic chemistry. Despite significant progress, a compelling challenge that still needs to be solved is the installation of highly functionalized C(sp3 )-hybridized centers without requiring pre-activated substrates. We herein report that inexpensive and easy-to-synthesize decatungstate photo-HAT, in combination with nickel catalysis, provides a versatile platform for three-component alkene difunctionalization through direct and selective activation of aliphatic C-H bonds. Compared with previous studies, the significant advantages of this strategy are that the most abundant hydrocarbons are used as feedstocks, and various highly functionalized tertiary, secondary, and primary C(sp3 )-hybrid centers can be easily installed. The practicability of this strategy is demonstrated in the selective late-stage functionalization of natural products and the concise synthesis of pharmaceutically relevant molecules including Piragliatin.
Collapse
Affiliation(s)
- Sheng Xu
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Herong Chen
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Zhijun Zhou
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Wangqing Kong
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
12
|
Xu S, Chen H, Zhou Z, Kong W. Three‐Component Alkene Difunctionalization by Direct and Selective Activation of Aliphatic C−H Bonds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sheng Xu
- The Center for Precision Synthesis (CPS) Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China
| | - Herong Chen
- The Center for Precision Synthesis (CPS) Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China
| | - Zhijun Zhou
- The Center for Precision Synthesis (CPS) Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China
| | - Wangqing Kong
- The Center for Precision Synthesis (CPS) Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|