1
|
Zhou Y, Gao X, Lu Y, Zhang R, Lv K, Gong J, Feng J, Zhang H. A pH-Responsive Charge-Convertible Drug Delivery Nanocarrier for Precise Starvation and Chemo Synergistic Oncotherapy. Chempluschem 2023; 88:e202200394. [PMID: 36725346 DOI: 10.1002/cplu.202200394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Indexed: 12/15/2022]
Abstract
A pH-responsive charge-convertible drug delivery nanocarrier (MSN-TPZ-GOx@ZnO@PAH-PEG-DMMA, abbreviated as MTGZ@PPD) was prepared, which could specifically release hypoxia-activated chemotherapeutic Tirapazamine (TPZ) and glucose oxidase (GOx) in the tumor site for precise starvation and chemo synergistic oncotherapy. Acid-responsive Schiff base structure modified mesoporous silica nanoparticles (MSN) co-load with GOx and TPZ, then link with ZnO quantum dots (QDs). PAH-PEG-DMMA (PPD) polymer makes MTGZ@PPD with biocompatibility and charge-convertible feature. MTGZ@PPD is negatively charged at physiological pH, and the charge reversal of PPD and acidolysis of the Schiff base structure under the acidic tumor microenvironment (TME) induce a positively charged surface, which could potentiate the cell internalization. ZnO QDs could decompose at acidic TME, achieving controllable drug release. GOx could starve the tumor cells and enhance hypoxia level, thus initiates the activation of TPZ to realize synergistic starvation therapy and chemotherapy. This intelligent MTGZ@PPD has shown great potential for starvation and chemo synergistic oncotherapy.
Collapse
Affiliation(s)
- Yifei Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuan Gao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yu Lu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ruohao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Kehong Lv
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jitong Gong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
2
|
Zhou Z, Du C, Zhang Q, Yu G, Zhang F, Chen X. Exquisite Vesicular Nanomedicine by Paclitaxel Mediated Co-assembly with Camptothecin Prodrug. Angew Chem Int Ed Engl 2021; 60:21033-21039. [PMID: 34278702 DOI: 10.1002/anie.202108658] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 11/10/2022]
Abstract
We report that the self-assembly of drug amphiphiles, Evans blue conjugated camptothecin prodrug (EB-CPT), can be modulated by another anticancer drug paclitaxel (PTX), resulting in ultrahigh quality of nanovesicles (NVs) with uniform shape and diameters of around 80 nm with the EB-CPT:PTX weight ratio of 1:1, 1:2, and 1:3, denoted as ECX NVs. Significantly, the co-assembly of EB-CPT and PTX without adding other excipients has nearly 100 % drug loading efficiency (DLE) and ultrahigh drug loading content (DLC) of PTX alone of up to 72.3±1.7 wt % which, to our best knowledge, is among the highest level reported in literature. Moreover, the ECX NVs with the EB-CPT:PTX weight ratio of 1:2 showed remarkable combination index of 0.59 at a level of 50 % efficacy against HCT116 cells in vitro and greatly improved tumor inhibition effect in vivo compared with two clinically approved CPT- and PTX-based anticancer nanomedicines (Onivyde and Abraxane) individually and their combinations.
Collapse
Affiliation(s)
- Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Chao Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Qianyu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Guocan Yu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, Miami, FL, 33146, USA
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
3
|
Zhou Z, Du C, Zhang Q, Yu G, Zhang F, Chen X. Exquisite Vesicular Nanomedicine by Paclitaxel Mediated Co‐assembly with Camptothecin Prodrug. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 P. R. China
| | - Chao Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 P. R. China
| | - Qianyu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen 361102 P. R. China
| | - Guocan Yu
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Fuwu Zhang
- Department of Chemistry University of Miami Miami FL 33146 USA
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 117597 Singapore
- Clinical Imaging Research Centre Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
- Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| |
Collapse
|
4
|
Li M, Jiang S, Simon J, Paßlick D, Frey ML, Wagner M, Mailänder V, Crespy D, Landfester K. Brush Conformation of Polyethylene Glycol Determines the Stealth Effect of Nanocarriers in the Low Protein Adsorption Regime. NANO LETTERS 2021; 21:1591-1598. [PMID: 33560851 PMCID: PMC8023711 DOI: 10.1021/acs.nanolett.0c03756] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
For nanocarriers with low protein affinity, we show that the interaction of nanocarriers with cells is mainly affected by the density, the molecular weight, and the conformation of polyethylene glycol (PEG) chains bound to the nanocarrier surface. We achieve a reduction of nonspecific uptake of ovalbumin nanocarriers by dendritic cells using densely packed PEG chains with a "brush" conformation instead of the collapsed "mushroom" conformation. We also control to a minor extent the dysopsonin adsorption by tailoring the conformation of attached PEG on the nanocarriers. The brush conformation of PEG leads to a stealth behavior of the nanocarriers with inhibited uptake by phagocytic cells, which is a prerequisite for successful in vivo translation of nanomedicine to achieve long blood circulation and targeted delivery. We can clearly correlate the brush conformation of PEG with inhibited phagocytic uptake of the nanocarriers. This study shows that, in addition to the surface's chemistry, the conformation of polymers controls cellular interactions of the nanocarriers.
Collapse
Affiliation(s)
- Mengyi Li
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shuai Jiang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Johanna Simon
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Dermatology, Johannes-Gutenberg University, 55131 Mainz, Germany
| | - David Paßlick
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Dermatology, Johannes-Gutenberg University, 55131 Mainz, Germany
| | - Marie-Luise Frey
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Manfred Wagner
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Dermatology, Johannes-Gutenberg University, 55131 Mainz, Germany
| | - Daniel Crespy
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Katharina Landfester
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|