1
|
Idili A, Montón H, Medina-Sánchez M, Ibarlucea B, Cuniberti G, Schmidt OG, Plaxco KW, Parolo C. Continuous monitoring of molecular biomarkers in microfluidic devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:295-333. [PMID: 35094779 DOI: 10.1016/bs.pmbts.2021.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The ability to monitor molecular targets is crucial in fields ranging from healthcare to industrial processing to environmental protection. Devices employing biomolecules to achieve this goal are called biosensors. Over the last half century researchers have developed dozens of different biosensor approaches. In this chapter we analyze recent advances in the biosensing field aiming at adapting these to the problem of continuous molecular monitoring in complex sample streams, and how the merging of these sensors with lab-on-a-chip technologies would be beneficial to both. To do so we discuss (1) the components that comprise a biosensor, (2) the challenges associated with continuous molecular monitoring in complex sample streams, (3) how different sensing strategies deal with (or fail to deal with) these challenges, and (4) the implementation of these technologies into lab-on-a-chip architectures.
Collapse
Affiliation(s)
- Andrea Idili
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Department of Chemical Science and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Helena Montón
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States
| | | | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Technische Universität Dresden, Dresden, Germany; Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Technische Universität Dresden, Dresden, Germany; Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany; Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz, Germany; School of Science, TU Dresden, Dresden, Germany
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Interdepartmental Program in Biomolecular Science and Engineering University of California, Santa Barbara, CA, United States
| | - Claudio Parolo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Barcelona Institute for Global Health (ISGlobal) Hospital Clínic, Barcelona, Spain.
| |
Collapse
|
2
|
Yan Z, He M, Zhang Y, Hu G, Li H. Methylene blue-enhanced electrochemical oxidation of tyrosine residues in native/denatured bovine serum albumin and HIV-1 Tat peptide. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
3
|
Aleman J, Kilic T, Mille LS, Shin SR, Zhang YS. Microfluidic integration of regeneratable electrochemical affinity-based biosensors for continual monitoring of organ-on-a-chip devices. Nat Protoc 2021; 16:2564-2593. [PMID: 33911259 DOI: 10.1038/s41596-021-00511-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/22/2021] [Indexed: 12/15/2022]
Abstract
Organs-on-chips have emerged as viable platforms for drug screening and personalized medicine. While a wide variety of human organ-on-a-chip models have been developed, rarely have there been reports on the inclusion of sensors, which are critical in continually measuring the microenvironmental parameters and the dynamic responses of the microtissues to pharmaceutical compounds over extended periods of time. In addition, automation capacity is strongly desired for chronological monitoring. To overcome this major hurdle, in this protocol we detail the fabrication of electrochemical affinity-based biosensors and their integration with microfluidic chips to achieve in-line microelectrode functionalization, biomarker detection and sensor regeneration, allowing continual, in situ and noninvasive quantification of soluble biomarkers on organ-on-a-chip platforms. This platform is almost universal and can be applied to in-line detection of a majority of biomarkers, can be connected with existing organ-on-a-chip devices and can be multiplexed for simultaneous measurement of multiple biomarkers. Specifically, this protocol begins with fabrication of the electrochemically competent microelectrodes and the associated microfluidic devices (~3 d). The integration of electrochemical biosensors with the chips and their further combination with the rest of the platform takes ~3 h. The functionalization and regeneration of the microelectrodes are subsequently described, which require ~7 h in total. One cycle of sampling and detection of up to three biomarkers accounts for ~1 h.
Collapse
Affiliation(s)
- Julio Aleman
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tugba Kilic
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, USA
| | - Luis S Mille
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.
| |
Collapse
|