1
|
Liu J, Zhu Y, Li S, Hu Y, Chen K, Li T, Zhang Y. Benzothiadiazole-Based Ordered Mesoporous Polymer as a Versatile, Metal-Free Heterogeneous Photocatalyst. Chemistry 2024; 30:e202402040. [PMID: 39007169 DOI: 10.1002/chem.202402040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Visible-light active heterogeneous organophotocatalysts have recently gained considerable interest in organic synthetic community. Ordered mesoporous polymers (OMPs) are highly promising as heterogeneous alternative to traditional precious metal/organic dyes-based photocatalysts. Herein, we report the preparation of a benzothiadiazole functionalized OMPs (BT-MPs) through a "bottom-up" strategy. High ordered periodic porosity, large surface area, excellent stability and rational energy-band structures guarantee the high catalytic activity of BT-MPs. As a result, at least six conversions, e. g., the [3+2] cycloaddition of phenols with olefins, the selective oxidation of sulfides, the C-3 thiocyanation of indole and the aminothiocyanation of β-keto ester, could be promoted smoothly by BT-MPs. In addition, BT-MPs was readily recovered with well maintaining its photocatalytic activity and could be reused for at least eight times. This study highlights the potential of exploiting photoactive OMPs as recyclable, robust and metal-free heterogeneous photocatalysts.
Collapse
Affiliation(s)
- Jiyu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yin Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Shengyu Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yansong Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Kuan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Tingyan Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
2
|
Zhao H, Qi Y, Zhan P, Zhu Q, Liu X, Guan X, Zhang C, Su C, Qin P, Cai D. Artificial Photoenzymatic Reduction of Carbon Dioxide to Methanol by Using Electron Mediator and Co-factorAssembled ZnIn 2 S 4 Nanoflowers. CHEMSUSCHEM 2023:e202300061. [PMID: 36847586 DOI: 10.1002/cssc.202300061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Increased absorption of visible light, low electron-hole recombination, and fast electron transfer are the major objectives for highly effective photocatalysts in biocatalytic artificial photosynthetic systems. In this study, a polydopamine (PDA) layer containing electron mediator, [M], and NAD+ cofactor was assembled on the outer surface of ZnIn2 S4 nanoflower, and the as-prepared nanoparticle, ZnIn2 S4 /PDA@poly/[M]/NAD+ , was used for photoenzymatic methanol production from CO2 . Because of effective capturing of visible light, reduced distance of electron transfer, and elimination of electron-holes recombination, a high NADH regeneration of 80.7±1.43 % could be obtained using the novel ZnIn2 S4 /PDA@poly/[M]/NAD+ . In the artificial photosynthesis system, a maximum methanol production of 116.7±11.8 μm was obtained. The enzymes and nanoparticles in the hybrid bio-photocatalysis system could be easily recovered using the ultrafiltration membrane at the bottom of the photoreactor. This is due to the successful immobilization of the small blocks including the electron mediator and cofactor on the surface of the photocatalyst. The ZnIn2 S4 /PDA@poly/[M]/NAD+ photocatalyst exhibited good stability and recyclability for methanol production. The novel concept presented in this study shows great promise for other sustainable chemical productions through artificial photoenzymatic catalysis.
Collapse
Affiliation(s)
- Hongqing Zhao
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yanou Qi
- School of International Education, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Peng Zhan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qian Zhu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiangshi Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinyao Guan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chenxi Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Changsheng Su
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peiyong Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Sun R, Wang X, Wang X, Tan B. Three-Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Angew Chem Int Ed Engl 2022; 61:e202117668. [PMID: 35038216 DOI: 10.1002/anie.202117668] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/09/2022]
Abstract
The growth of crystalline covalent triazine frameworks (CTFs) is still considered as a great challenge due to the less reversible covalent bonds of triazine linkages. The research studies of crystalline CTFs to date have been limited to two-dimensional (2D) structures, and the three-dimensional (3D) crystalline CTFs have never been reported before. Herein we report the design and synthesis of two 3D crystalline CTFs, termed 3D CTF-TPM and 3D CTF-TPA through a reversible/irreversible polycondensation approach. The targeted 3D CTFs adopt ctn topology, and show moderate crystallinity, relatively large surface area (ca. 2000 m2 g-1 ), and high CO2 uptake capacity (23.61 wt.%). Moreover, these 3D CTFs exhibit ultrastability in the presence of boiling water, strong acid (1 M HCl) and strong base (1 M NaOH). This contribution represents the first report of 3D crystalline CTFs, which not only extends their structural diversity but also offers a synthetic strategy and structural basis for expanding practical applications of CTF materials.
Collapse
Affiliation(s)
- Ruixue Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xiaoyan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xuepeng Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| |
Collapse
|
4
|
Jin E, Fu S, Hanayama H, Addicoat MA, Wei W, Chen Q, Graf R, Landfester K, Bonn M, Zhang KAI, Wang HI, Müllen K, Narita A. A Nanographene‐Based Two‐Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Enquan Jin
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Shuai Fu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Hiroki Hanayama
- Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University Kunigami-gun, Okinawa 904-0495 Japan
| | - Matthew A. Addicoat
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS UK
| | - Wenxin Wei
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Qiang Chen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Robert Graf
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | | - Mischa Bonn
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Kai A. I. Zhang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Department of Materials Science Fudan University Shanghai 200433 P.R. China
| | - Hai I. Wang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University Kunigami-gun, Okinawa 904-0495 Japan
| |
Collapse
|
5
|
Jin E, Fu S, Hanayama H, Addicoat MA, Wei W, Chen Q, Graf R, Landfester K, Bonn M, Zhang KAI, Wang HI, Müllen K, Narita A. A Nanographene-Based Two-Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202114059. [PMID: 34870362 PMCID: PMC9299764 DOI: 10.1002/anie.202114059] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 01/14/2023]
Abstract
Synthesis of covalent organic frameworks (COFs) with desirable organic units furnishes advanced materials with unique functionalities. As an emerging class of two-dimensional (2D) COFs, sp2 -carbon-conjugated COFs provide a facile platform to build highly stable and crystalline porous polymers. Herein, a 2D olefin-linked COF was prepared by employing nanographene, namely, dibenzo[hi,st]ovalene (DBOV), as a building block. The DBOV-COF exhibits unique ABC-stacked lattices, enhanced stability, and charge-carrier mobility of ≈0.6 cm2 V-1 s-1 inferred from ultrafast terahertz photoconductivity measurements. The ABC-stacking structure was revealed by the high-resolution transmission electron microscopy and powder X-ray diffraction. DBOV-COF demonstrated remarkable photocatalytic activity in hydroxylation, which was attributed to the exposure of narrow-energy-gap DBOV cores in the COF pores, in conjunction with efficient charge transport following light absorption.
Collapse
Affiliation(s)
- Enquan Jin
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Shuai Fu
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Hiroki Hanayama
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate UniversityKunigami-gun, Okinawa904-0495Japan
| | - Matthew A. Addicoat
- School of Science and TechnologyNottingham Trent UniversityClifton Lane, NottinghamNG11 8NSUK
| | - Wenxin Wei
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Qiang Chen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Robert Graf
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | | | - Mischa Bonn
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Kai A. I. Zhang
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of Materials ScienceFudan UniversityShanghai200433P.R. China
| | - Hai I. Wang
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Klaus Müllen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Akimitsu Narita
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate UniversityKunigami-gun, Okinawa904-0495Japan
| |
Collapse
|
6
|
Sun R, Wang X, Wang X, Tan B. Three‐Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ruixue Sun
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Xiaoyan Wang
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Xuepeng Wang
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Bien Tan
- Huazhong University of Science and Technology School of Chemisry & Chemical Engineering 1037 Luoyu Road 430074 Wuhan CHINA
| |
Collapse
|