1
|
Shao T, Ni HF, Su CY, Jia QQ, Xie LY, Fu DW, Lu HF. Integrated Reversible Thermochromism, High T c , Dielectric Switch and Narrow Band Gap in One Multifunctional Ferroic. Chemistry 2022; 28:e202202533. [PMID: 36082618 DOI: 10.1002/chem.202202533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 12/14/2022]
Abstract
Organic-inorganic Hybrid (OIH) materials for multifunctional switchable applications have attracted enormous attention in recent years due to their excellent optoelectronic properties and good structural tunability. However, it still remains challenging to fabricate one simple OIH compound with multi-functionals properties, such as dielectric switching, thermochromic properties, semiconductor characteristics and ferroelasticity. Under this context, we successfully synthesized [2-(2-fluorophenyl)ethan-1- ammonium]2 SnBr6 (compound 1), which has a higher phase transition temperature of 427.7 K. Additionally, it exhibits a semiconducting property with an indirect band gap of 2.36 eV. Combining ferroelastic, narrow band gap, thermochromic, and dielectric properties, compound 1 can be considered as a rarely reported multi-functional ferroelastic material, which is expected to give inspiration for broadening the applications in the smart devices field.
Collapse
Affiliation(s)
- Ting Shao
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Chang-Yuan Su
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P.R. China
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Li-Yan Xie
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China.,Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P.R. China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| |
Collapse
|
2
|
Mao Y, Chen X, Gu Z, Zhang Z, Song X, Gu N, Xiong R. Homochiral Multiferroic Cyanido‐Bridged Dimetallic Complexes Assembled by C−F⋅⋅⋅K Interactions. Angew Chem Int Ed Engl 2022; 61:e202204135. [DOI: 10.1002/anie.202204135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Mao
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices Southeast University Nanjing 210096 P. R. China
| | - Xiao‐Gang Chen
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Zhu‐Xiao Gu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics Southeast University Nanjing 211189 P. R. China
| | - Zhi‐Xu Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics Southeast University Nanjing 211189 P. R. China
| | - Xian‐Jiang Song
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| | - Ning Gu
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices Southeast University Nanjing 210096 P. R. China
| | - Ren‐Gen Xiong
- Ordered Matter Science Research Center Nanchang University Nanchang 330031 P. R. China
| |
Collapse
|
3
|
Cao R, Zheng Y, Chen T, Lan B, Li L, Zhong Q, Nie S, Wang J. Synthesis and tunable emission from yellow-green to red-orange of Ca3MgSi2O8:Eu3+, Dy3+ phosphor. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Jia QQ, Tong L, Zhang WY, Fu DW, Lu HF. Two-Step Dielectric Responsive Organic-Inorganic Hybrid Material with Mid-Band Light Emission. Chemistry 2022; 28:e202200579. [PMID: 35467772 DOI: 10.1002/chem.202200579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 12/17/2022]
Abstract
Hybrid organic-inorganic perovskite (HOIP) have received tremendous scientific attention because of the phase transition and photovoltaic properties. However, achieving the special perovskite structure with both two-step dielectric response and luminescence characteristics is rarely reported. Herein, we report an organic-inorganic hybrid perovskite, [(BA)2 ⋅ PbI4 ] (Compound 1, BA=n-butylamine) by introducing flexible organic cations (HBA+ ), with direct mid-band gap as 2.28 eV. Interestingly, this material exhibits two-step reversible dielectric response at 350 K and 460 K (in heating process), respectively. Besides, the photoluminescence was found: it emits charming green light under 365 nm lamp (Photoluminescence quantum yield is 9.52 %). The outstanding two-step dielectric response and luminescence characteristics of this compound might pave the way for the application of dielectric and ferroelectric functional materials in temperature sensors and mechanical switches.
Collapse
Affiliation(s)
- Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Liang Tong
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212002, P.R. China
| | - Wan-Ying Zhang
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| |
Collapse
|
5
|
Li J, Zhu Y, Huang PZ, Fu DW, Jia QQ, Lu HF. Ferroelasticity in Organic-Inorganic Hybrid Perovskites. Chemistry 2022; 28:e202201005. [PMID: 35790034 DOI: 10.1002/chem.202201005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 11/10/2022]
Abstract
Molecular ferroelastics have received particular attention for potential applications in mechanical switches, shape memory, energy conversion, information processing, and solar cells, by taking advantages of their low-cost, light-weight, easy preparation, and mechanical flexibility. The unique structures of organic-inorganic hybrid perovskites have been considered to be a design platform for symmetry-breaking-associated order-disorder in lattice, thereby possessing great potential for ferroelastic phase transition. Herein, we review the research progress of organic-inorganic hybrid perovskite ferroelastics in recent years, focusing on the crystal structures, dimensions, phase transitions and ferroelastic properties. In view of the few reports on molecular-based hybrid ferroelastics, we look forward to the structural design strategies of molecular ferroelastic materials, as well as the opportunities and challenges faced by molecular-based hybrid ferroelastic materials in the future. This review will have positive guiding significance for the synthesis and future exploration of organic-inorganic hybrid molecular ferroelastics.
Collapse
Affiliation(s)
- Jie Li
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P.R. China
| | - Yang Zhu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P.R. China
| | - Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Da-Wei Fu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P.R. China
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| |
Collapse
|
6
|
Mao Y, Chen XG, Gu ZX, Zhang ZX, Song XJ, Gu N, Xiong RG. Homochiral Multiferroic Cyanido‐Bridged Dimetallic Complexes Assembled by C–F···K Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yu Mao
- Southeast University State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices 210096 Nanjing CHINA
| | - Xiao-Gang Chen
- Nanchang University Ordered Matter Science Research Center 330031 Nanchang CHINA
| | - Zhu-Xiao Gu
- Southeast University Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics 211189 Nanjing CHINA
| | - Zhi-Xu Zhang
- Southeast University Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics 211189 Nanjing CHINA
| | - Xian-Jiang Song
- Nanchang University Ordered Matter Science Research Center 330031 Nanchang CHINA
| | - Ning Gu
- Southeast University State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices 210096 Nanjing CHINA
| | - Ren-Gen Xiong
- Nanchang University Ordered Matter Science Research Center No. 999 Xuefu Avenue, Honggutan New District 330031 Nanchang CHINA
| |
Collapse
|
7
|
Han K, Wei Z, Ye X, Li B, Wang P, Cai H. A lead bromide organic-inorganic hybrid perovskite material showing reversible dual phase transition and robust SHG switching. Dalton Trans 2022; 51:8273-8278. [PMID: 35579326 DOI: 10.1039/d2dt01040b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-dimensional organic-inorganic hybrid perovskite material [3.3.0-dabco]PbBr3 (1) was synthesized by the reaction of 1,5-diazabicyclo[3.3.0]octane (3.3.0-dabco) with PbBr2 in concentrated HBr aqueous solution. Differential scanning calorimetry, dielectric measurements, and variable-temperature structural analyses revealed that compound 1 exhibits two successive structural phase transitions from P212121 to Pbcm at 387 K (T1) and then to P6/mmc at 436 K (T2), accompanied by two pairs of dielectric anomalies with a clear one at T1 and an unobvious one at T2. In addition, compound 1 shows a robust second harmonic generation (SHG) effect between SHG-OFF and SHG-ON states during its centrosymmetric to non-centrosymmetric symmetry breaking phase transition at T1.
Collapse
Affiliation(s)
- Keke Han
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Xing Ye
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Bo Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Pan Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| |
Collapse
|
8
|
Huang Y, Xiang L, Feng Y, An Z, Miao L, Li J, Ye H, Shi C. High Quality of a Perchlorate‐Based Hybrid Perovskite‐Type Cage‐Like Single Crystal – Evidence of Temperature‐Induced Distinct Dielectric Transition. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yi‐Fang Huang
- Chaotic Matter Science Research Center Jiangxi University of Science and Technology Ganzhou, Jiangxi 330000 China
| | - Lin Xiang
- Chaotic Matter Science Research Center Jiangxi University of Science and Technology Ganzhou, Jiangxi 330000 China
| | - Yan Feng
- Chaotic Matter Science Research Center Jiangxi University of Science and Technology Ganzhou, Jiangxi 330000 China
| | - Zhen An
- Chaotic Matter Science Research Center Jiangxi University of Science and Technology Ganzhou, Jiangxi 330000 China
| | - Le‐Ping Miao
- Chaotic Matter Science Research Center Jiangxi University of Science and Technology Ganzhou, Jiangxi 330000 China
| | - Jian‐Rong Li
- Chaotic Matter Science Research Center Jiangxi University of Science and Technology Ganzhou, Jiangxi 330000 China
| | - Heng‐Yun Ye
- Chaotic Matter Science Research Center Jiangxi University of Science and Technology Ganzhou, Jiangxi 330000 China
| | - Chao Shi
- Chaotic Matter Science Research Center Jiangxi University of Science and Technology Ganzhou, Jiangxi 330000 China
| |
Collapse
|
9
|
Chen M, Su C, Zhang W, Wang W, Huang P, Zhang Y, Fu D. Organic‐Inorganic Hybrid Crystal [1‐methylpiperidinium]
2
[ZnCl
4
] with High
T
c
Phase Transition and Dielectric Switches. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ming Chen
- Ordered Matter Science Research Center Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics Southeast University 211189 Nanjing P. R. China
| | - Chang‐Yuan Su
- Ordered Matter Science Research Center Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics Southeast University 211189 Nanjing P. R. China
| | - Wan‐Ying Zhang
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University 321004 Jinhua P. R. China
- School of Sciences Bengbu University 233030 Bengbu P. R. China
| | - Wei‐Yi Wang
- Ordered Matter Science Research Center Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics Southeast University 211189 Nanjing P. R. China
| | - Pei‐Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University 321004 Jinhua P. R. China
| | - Yi Zhang
- Ordered Matter Science Research Center Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics Southeast University 211189 Nanjing P. R. China
| | - Da‐Wei Fu
- Ordered Matter Science Research Center Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics Southeast University 211189 Nanjing P. R. China
| |
Collapse
|
10
|
Fu D, Gao J, Huang P, Ren R, Shao T, Han L, Liu J, Gong J. Observation of Transition from Ferroelasticity to Ferroelectricity by Solvent Selective Effect in Anilinium Bromide. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Da‐Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Ji‐Xing Gao
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Pei‐Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Rui‐Ying Ren
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Ting Shao
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Li‐Jun Han
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Jia Liu
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Jun‐Miao Gong
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| |
Collapse
|
11
|
Fu D, Gao J, Huang P, Ren R, Shao T, Han L, Liu J, Gong J. Observation of Transition from Ferroelasticity to Ferroelectricity by Solvent Selective Effect in Anilinium Bromide. Angew Chem Int Ed Engl 2021; 60:8198-8202. [DOI: 10.1002/anie.202015219] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/20/2021] [Indexed: 01/05/2023]
Affiliation(s)
- Da‐Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Ji‐Xing Gao
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Pei‐Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Rui‐Ying Ren
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Ting Shao
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Li‐Jun Han
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Jia Liu
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Jun‐Miao Gong
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| |
Collapse
|