1
|
Zhang J, Li X, Hu H, Huang H, Li H, Sun X, Ma T. Enhancing photocatalytic performance of covalent organic frameworks via ionic polarization. Nat Commun 2024; 15:9576. [PMID: 39505870 PMCID: PMC11541737 DOI: 10.1038/s41467-024-53834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Covalent organic frameworks have emerged as a thriving family in the realm of photocatalysis recently, yet with concerns about their high exciton dissociation energy and sluggish charge transfer. Herein, a strategy to enhance the built-in electric field of series β-keto-enamine-based covalent organic frameworks by ionic polarization method is proposed. The ionic polarization is achieved through a distinctive post-synthetic quaternization reaction which can endow the covalent organic frameworks with separated charge centers comprising cationic skeleton and iodide counter-anions. The stronger built-in electric field generated between their cationic framework and iodide anions promotes charge transfer and exciton dissociation efficiency. Moreover, the introduced iodide anions not only serve as reaction centers with lowered H* formation energy barrier, but also act as electron extractant suppressing the recombination of electron-hole pairs. Therefore, the photocatalytic performance of the covalent organic frameworks shows notable improvement, among which the CH3I-TpPa-1 can deliver an high H2 production rate up to 9.21 mmol g-1 h-1 without any co-catalysts, representing a 42-fold increase compared to TpPa-1, being comparable to or possibly exceeding the current covalent organic framework photocatalysts with the addition of Pt co-catalysts.
Collapse
Affiliation(s)
- Jiahe Zhang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, People's Republic of China
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia
| | - Xiaoning Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, Australia
| | - Haijun Hu
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, People's Republic of China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, China
| | - Hui Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, Australia
| | - Xiaodong Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, People's Republic of China.
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia.
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, Australia.
| |
Collapse
|
2
|
Wen L, Liu B. Kinetic pathways of sub-bandgap induced electron transfer in Ag/TiO 2 and the effect on isopropanol dehydrogenation under gaseous conditions. Phys Chem Chem Phys 2024; 26:11113-11125. [PMID: 38530657 DOI: 10.1039/d3cp05897b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Electron transfer and its kinetics play a major role in the photocatalysis of metal/semiconductor systems. Using in situ photoconductances, in situ photoabsorption, and photoinduced spectroscopic techniques, the present research aimed to gain a deep insight into electron transfer pathways and their kinetics for Ag/TiO2 systems under sub-bandgap light illumination and gaseous conditions. The results revealed that electrons generated in TiO2 can transfer to Ag nanoparticles at fast rates, and plasmon-generated electrons in Ag nanoparticles can also transfer to TiO2. However, it was found that plasmon-assisted hot electron transfer efficiency is much lower than the electron transition from the valence band to the conduction band of TiO2. Rather than plasmonic active spots, the results showed that Ag nanoparticles acted as co-catalyst sites bridging electron transfer to recombination in a methanol-containing N2 atmosphere. As a result, photocatalytic isopropanol dehydrogenation was decreased. Independent of Ag decorations, it was also indicated that isopropanol dehydrogenation mainly occurred over TiO2 surfaces; therefore, Ag nanoparticles did not increase photocatalytic activities. Our results may provide a different viewpoint on sub-bandgap light-induced Ag/TiO2 photocatalysis under gaseous conditions; this may also facilitate the understanding of the photocatalytic mechanism of metal/semiconductor systems.
Collapse
Affiliation(s)
- Liping Wen
- School of Environmental & Biological Engineering, Wuhan Technology and Business University, Wuhan city, Hubei province, 430065, P. R. China
| | - Baoshun Liu
- State Key laboratory of silicate Materials for Architectures, Wuhan University of Technology, Wuhan City, Hubei Province, P. R. China.
| |
Collapse
|
3
|
Ziarati A, Zhao J, Afshani J, Kazan R, Perez Mellor A, Rosspeintner A, McKeown S, Bürgi T. Advanced Catalyst for CO 2 Photo-Reduction: From Controllable Product Selectivity by Architecture Engineering to Improving Charge Transfer Using Stabilized Au Clusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207857. [PMID: 36895069 DOI: 10.1002/smll.202207857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Indexed: 06/15/2023]
Abstract
Despite enormous progress and improvement in photocatalytic CO2 reduction reaction (CO2 RR), the development of photocatalysts that suppress H2 evolution reaction (HER), during CO2 RR, remains still a challenge. Here, new insight is presented for controllable CO2 RR selectivity by tuning the architecture of the photocatalyst. Au/carbon nitride with planar structure (p Au/CN) showed high activity for HER with 87% selectivity. In contrast, the same composition with a yolk@shell structure (Y@S Au@CN) exhibited high selectivity of carbon products by suppressing the HER to 26% under visible light irradiation. Further improvement for CO2 RR activity was achieved by a surface decoration of the yolk@shell structure with Au25 (PET)18 clusters as favorable electron acceptors, resulting in longer charge separation in Au@CN/Auc Y@S structure. Finally, by covering the structure with graphene layers, the designed catalyst maintained high photostability during light illumination and showed high photocatalytic efficiency. The optimized Au@CN/Auc /G Y@S structure displays high photocatalytic CO2 RR selectivity of 88%, where the CO and CH4 generations during 8 h are 494 and 198 µmol/gcat., respectively. This approach combining architecture engineering and composition modification provides a new strategy with improved activity and controllable selectivity toward targeting applications in energy conversion catalysis.
Collapse
Affiliation(s)
- Abolfazl Ziarati
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Jiangtao Zhao
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Jafar Afshani
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Rania Kazan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Ariel Perez Mellor
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Siobhan McKeown
- Deparment of Quantum Matter Physics, Laboratory of Advanced Technology, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| |
Collapse
|
4
|
Lechaptois L, Prado Y, Pluchery O. KPFM visualisation of the Schottky barrier at the interface between gold nanoparticles and silicon. NANOSCALE 2023; 15:7510-7516. [PMID: 37021673 DOI: 10.1039/d3nr00178d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gold nanoparticles (AuNPs) deposited on a doped silicon substrate induce a local band bending and a local accumulation of positive charges in a semiconductor. Unlike the case of planar gold-silicon contacts, working with nanoparticles results in reduced values for the built-in potential and lower Schottky barriers. Here, AuNPs of 55 nm diameter were deposited on several silicon substrates that were previously functionalized with aminopropyltriethoxysilane (APTES). The samples are characterized by Scanning Electron Microscopy (SEM) and the nanoparticle surface density is assessed with dark-field optical microscopy. A density of 0.42 NP μm-2 was measured. Kelvin Probe Force Microscopy (KPFM) is used to measure the contact potential differences (CPD). The CPD images exhibit a ring-shaped pattern ("doughnut-shape") centred on each AuNP. The built-in potential is measured at +34 mV for n-doped substrates and it decreased to +21 mV for p-doped silicon. These effects are discussed using the classical electrostatic approach.
Collapse
Affiliation(s)
- Luis Lechaptois
- Institut des NanoScience de Paris, Sorbonne University, CNRS, UMR7580, 4 place Jussieu, 75005, Paris, France.
- Slim Lab, Nanyang Technological University, 70 Nanyang Drive, Singapore
| | - Yoann Prado
- Institut des NanoScience de Paris, Sorbonne University, CNRS, UMR7580, 4 place Jussieu, 75005, Paris, France.
| | - Olivier Pluchery
- Institut des NanoScience de Paris, Sorbonne University, CNRS, UMR7580, 4 place Jussieu, 75005, Paris, France.
| |
Collapse
|
5
|
Wei Y, Hao Q, Fan X, Li M, Yao L, Li G, Zhao X, Huang H, Qiu T. Investigation of the Plasmon-Activated C-C Coupling Reactions by Liquid-State SERS Measurement. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54320-54327. [PMID: 36441512 DOI: 10.1021/acsami.2c15223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The implementation of plasmonic materials in heterogeneous catalysis was limited due to the lack of experimental access in managing the plasmonic hot carriers. Herein, we propose a liquid-state surface-enhanced Raman scattering (SERS) technique to manipulate and visualize heterogeneous photocatalysis with transparent plasmonic chips. The liquid-state measurement conquers the difficulties that arise from the plasmon-induced thermal effects, and thus the plasmon based strategies can be extended to investigate a wider range of catalytic reactions. We demonstrated the selection of reaction products by modulating the plasmonic hot carriers and explored the mechanisms in several typical C-C coupling reactions with 4-bromothiophenol (4-BTP) as reactants. The real-time experimental results suggest brand new mechanisms of the formation of C-C bonds on plasmonic metal nanoparticles (NPs): the residue of 4-BTP, but not thiophenol (TP), is responsible for the C-C coupling. Furthermore, this technique was extended to study the evolution of the Suzuki-Miyaura reaction on nonplasmonic palladium metals by establishing the charge transfer channels between palladium and Au NPs. The cleavage and formation of chemical bonds in each individual reaction step were discerned, and the corresponding working mechanisms were clarified.
Collapse
Affiliation(s)
- Yunjia Wei
- School of Physics, Southeast University, Nanjing 211189, China
| | - Qi Hao
- School of Physics, Southeast University, Nanjing 211189, China
| | - Xingce Fan
- School of Physics, Southeast University, Nanjing 211189, China
| | - Mingze Li
- School of Physics, Southeast University, Nanjing 211189, China
| | - Lei Yao
- School of Physics, Southeast University, Nanjing 211189, China
| | - Guoqun Li
- School of Physics, Southeast University, Nanjing 211189, China
| | - Xing Zhao
- School of Physics, Southeast University, Nanjing 211189, China
| | - Hao Huang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Teng Qiu
- School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
6
|
Sun Z, Sun K, Gao M, Metin Ö, Jiang H. Optimizing Pt Electronic States through Formation of a Schottky Junction on Non‐reducible Metal–Organic Frameworks for Enhanced Photocatalysis. Angew Chem Int Ed Engl 2022; 61:e202206108. [DOI: 10.1002/anie.202206108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Zi‐Xuan Sun
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P.R. China
| | - Kang Sun
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P.R. China
| | - Ming‐Liang Gao
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P.R. China
| | - Önder Metin
- Department of Chemistry College of Sciences Koç University Istanbul 34450 Turkey
| | - Hai‐Long Jiang
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 P.R. China
| |
Collapse
|
7
|
Zhang W, Li X, Liu S, Qiu J, An J, Yao J, Zuo S, Zhang B, Xia H, Li C. Photocatalytic Oxidation of 5-Hydroxymethylfurfural Over Interfacial-Enhanced Ag/TiO 2 Under Visible Light Irradiation. CHEMSUSCHEM 2022; 15:e202102158. [PMID: 34914202 DOI: 10.1002/cssc.202102158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Photocatalytic conversion of biomass-derived 5-hydroxyfurfural (HMF) to value-added 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) is an environmentally friendly process. Here, Ag nanoparticle (NP) supported on TiO2 (Ag/TiO2 ) materials with different interfacial structures were fabricated via incipient wetness impregnation. In the photocatalytic oxidation of 5-HMF to HMFCA, low-temperature reduction (473 K) on Ag/TiO2 could improve the photoinduced charge separation efficiency and promote the reaction due to the "enhanced" localized surface plasmon resonance (LSPR) effects achieved through strong metal-support interaction (SMSI). In particular, 2.5 % Ag/TiO2 -LTR exhibited superior performance with an HMFCA selectivity of up to 96.7 % under visible-light illumination. In contrast, the photocatalytic efficiency was greatly reduced when the reduction temperature increased to 773 K because of the encapsulation of Ag NPs by a thicker TiOx overlay, which significantly weakened visible-light harvesting. Overall, these findings offer an efficient methodology for designing interfacial enhanced plasmonic photocatalysts for the valorization of biomass.
Collapse
Affiliation(s)
- Weizi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 210037, Nanjing, P. R. China
| | - Xinxin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Shaoru Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 210037, Nanjing, P. R. China
| | - Jianhao Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 210037, Nanjing, P. R. China
| | - Jiahuan An
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 210037, Nanjing, P. R. China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 210037, Nanjing, P. R. China
| | - Songlin Zuo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 210037, Nanjing, P. R. China
| | - Bo Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Haian Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 210037, Nanjing, P. R. China
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| |
Collapse
|
8
|
Sun ZX, Sun K, Gao ML, Metin Ö, Jiang HL. Optimizing Pt Electronic States through Formation of Schottky Junction on Non‐reducible Metal–Organic Frameworks for Enhanced Photocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zi-Xuan Sun
- USTC: University of Science and Technology of China Chemistry CHINA
| | - Kang Sun
- USTC: University of Science and Technology of China Chemistry CHINA
| | - Ming-Liang Gao
- USTC: University of Science and Technology of China Chemistry CHINA
| | - Önder Metin
- Koç University: Koc Universitesi Chemistry TURKEY
| | - Hai-Long Jiang
- University of Science and Technology of China (USTC) Department of Chemistry No. 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
9
|
Chen R, Fan F, Li C. Unraveling Charge-Separation Mechanisms in Photocatalyst Particles by Spatially Resolved Surface Photovoltage Techniques. Angew Chem Int Ed Engl 2022; 61:e202117567. [PMID: 35100475 DOI: 10.1002/anie.202117567] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/08/2022]
Abstract
The photocatalytic conversion of solar energy offers a potential route to renewable energy, and its efficiency relies on effective charge separation in nanostructured photocatalysts. Understanding the charge-separation mechanism is key to improving the photocatalytic performance and this has now been enabled by advances in the spatially resolved surface photovoltage (SRSPV) method. In this Review we highlight progress made by SRSPV in mapping charge distributions at the nanoscale and determining the driving forces of charge separation in heterogeneous photocatalyst particles. We discuss how charge separation arising from a built-in electric field, diffusion, and trapping can be exploited and optimized through photocatalyst design. We also highlight the importance of asymmetric engineering of photocatalysts for effective charge separation. Finally, we provide an outlook on further opportunities that arise from leveraging these insights to guide the rational design of photocatalysts and advance the imaging technique to expand the knowledge of charge separation.
Collapse
Affiliation(s)
- Ruotian Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| |
Collapse
|
10
|
|
11
|
Chen R, Fan F, Li C. Unraveling Charge‐Separation Mechanisms in Photocatalyst Particles by Spatially Resolved Surface Photovoltage Techniques. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ruotian Chen
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Fengtao Fan
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Can Li
- State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| |
Collapse
|
12
|
Roy J, Chakraborty P, Paramasivam G, Natarajan G, Pradeep T. Gas phase ion chemistry of titanium-oxofullerene with ligated solvents. Phys Chem Chem Phys 2022; 24:2332-2343. [PMID: 35018393 DOI: 10.1039/d1cp04716g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We investigated the gas phase fragmentation events of highly symmetric fullerene-like (FN-like) titanium oxo-cluster anions, [H12Ti42O60(OCH3)42(HOCH3)10(H2O)2]2- (1) and [H7Ti42O60(OCH3)42(HOCH3)10(H2O)3]1- (2). These oxo-clusters contain a closed cage Ti42O60 core, protected by a specific number of methoxy, methanol, and water molecules acting as ligands. These dianionic and monoanionic species were generated in the gas phase by electrospray ionization of the H6[Ti42(μ3-O)60(OiPr)42(OH)12] (TOF) cluster in methanol. Collision induced dissociation studies of 1 revealed that upon increasing the collision energy, the protecting ligands were stripped off first, and [Ti41O58]2- was formed as the first fragment from the Ti42O60 core. Thereafter, systematic TiO2 losses were observed giving rise to subsequent fragments like [Ti40O56]2-, [Ti39O54]2-, [Ti38O52]2-, etc. Similar fragments were also observed for monoanionic species 2 as well. Systematic 23 TiO2 losses were observed, which were followed by complete shattering of the cage. We also carried out computational studies using density functional theory (DFT) to investigate the structures and fragmentation mechanism. The fragmentation of TOF was comparable to the fragmentation of C60 ions, where systematic C2 losses were observed. We believe that this is a consequence of topological similarity. The present study provides valuable insights into the structural constitution of TOF clusters and stability of the parent as well as the resulting cage-fragments in the gas phase.
Collapse
Affiliation(s)
- Jayoti Roy
- DST Unit of Nanoscience (DST UNS) & Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Papri Chakraborty
- DST Unit of Nanoscience (DST UNS) & Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Ganesan Paramasivam
- DST Unit of Nanoscience (DST UNS) & Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Ganapati Natarajan
- International Centre for Clean Water (ICCW), IIT Madras Research Park, Taramani, Chennai 6000113, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) & Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
13
|
Wang J, Sun Y, Liu H, Hou Y, Dai Y, Luo C, Wang X. Preparation of Bi 3Fe 0.5Nb 1.5O 9/g-C 3N 4 heterojunction photocatalysts and applications in the photocatalytic degradation of 2,4-dichlorophenol in environment. NEW J CHEM 2022. [DOI: 10.1039/d2nj01876d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The energy band relationship and the active substances were studied to determine photocatalyst accords with the Z-type transfer mechanism.
Collapse
Affiliation(s)
- Jingdao Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yuanling Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hao Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yanan Hou
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yuxue Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xueying Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
14
|
Zhao YX, Kang HS, Zhao WQ, Chen YL, Ma L, Ding SJ, Chen XB, Wang QQ. Dual Plasmon Resonances and Tunable Electric Field in Structure-Adjustable Au Nanoflowers for Improved SERS and Photocatalysis. NANOMATERIALS 2021; 11:nano11092176. [PMID: 34578492 PMCID: PMC8466837 DOI: 10.3390/nano11092176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
Flower-like metallic nanocrystals have shown great potential in the fields of nanophononics and energy conversion owing to their unique optical properties and particular structures. Herein, colloid Au nanoflowers with different numbers of petals were prepared by a steerable template process. The structure-adjustable Au nanoflowers possessed double plasmon resonances, tunable electric fields, and greatly enhanced SERS and photocatalytic activity. In the extinction spectra, Au nanoflowers had a strong electric dipole resonance located around 530 to 550 nm. Meanwhile, a longitudinal plasmon resonance (730~760 nm) was obtained when the number of petals of Au nanoflowers increased to two or more. Numerical simulations verified that the strong electric fields of Au nanoflowers were located at the interface between the Au nanosphere and Au nanopetals, caused by the strong plasmon coupling. They could be further tuned by adding more Au nanopetals. Meanwhile, much stronger electric fields of Au nanoflowers with two or more petals were identified under longitudinal plasmon excitation. With these characteristics, Au nanoflowers showed excellent SERS and photocatalytic performances, which were highly dependent on the number of petals. Four-petal Au nanoflowers possessed the highest SERS activity on detecting Rhodamine B (excited both at 532 and 785 nm) and the strongest photocatalytic activity toward photodegrading methylene blue under visible light irradiation, caused by the strong multi-interfacial plasmon coupling and longitudinal plasmon resonance.
Collapse
Affiliation(s)
- Yi-Xin Zhao
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China; (Y.-X.Z.); (H.-S.K.); (W.-Q.Z.); (Y.-L.C.); (X.-B.C.)
| | - Hao-Sen Kang
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China; (Y.-X.Z.); (H.-S.K.); (W.-Q.Z.); (Y.-L.C.); (X.-B.C.)
| | - Wen-Qin Zhao
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China; (Y.-X.Z.); (H.-S.K.); (W.-Q.Z.); (Y.-L.C.); (X.-B.C.)
| | - You-Long Chen
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China; (Y.-X.Z.); (H.-S.K.); (W.-Q.Z.); (Y.-L.C.); (X.-B.C.)
| | - Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China; (Y.-X.Z.); (H.-S.K.); (W.-Q.Z.); (Y.-L.C.); (X.-B.C.)
- Correspondence: (L.M.); (S.-J.D.); (Q.-Q.W.)
| | - Si-Jing Ding
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China
- Correspondence: (L.M.); (S.-J.D.); (Q.-Q.W.)
| | - Xiang-Bai Chen
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China; (Y.-X.Z.); (H.-S.K.); (W.-Q.Z.); (Y.-L.C.); (X.-B.C.)
| | - Qu-Quan Wang
- Department of Physics, Wuhan University, Wuhan 430072, China
- Correspondence: (L.M.); (S.-J.D.); (Q.-Q.W.)
| |
Collapse
|
15
|
Yuan L, Geng Z, Fan B, Guo F, Han C. State-of-the-art progress in tracking plasmon-mediated photoredox catalysis. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Metal nanocrystals (NCs), particularly for plasmonic metal NCs with specific morphology and size, can strongly interact with ultraviolet-visible or even near-infrared photons to generate energetic charge carriers, localized heating, and electric field enhancement. These unique properties offer a promising opportunity for maneuvering solar-to-chemical energy conversion through different mechanisms. As distinct from previous works, in this review, recent advances of various characterization techniques in probing and monitoring the photophysical/photochemical processes, as well as the reaction mechanisms of plasmon-mediated photoredox catalysis are thoroughly summarized. Understanding how to distinguish and track these reaction mechanisms would furnish basic guidelines to design next-generation photocatalysts for plasmon-enhanced catalysis.
Collapse
Affiliation(s)
- Lan Yuan
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials , School of Chemistry and Chemical Engineering , Wuhan University of Science and Technology , Wuhan 430081 , China
| | - Zhaoyi Geng
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials , School of Chemistry and Chemical Engineering , Wuhan University of Science and Technology , Wuhan 430081 , China
| | - Baoan Fan
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials , School of Chemistry and Chemical Engineering , Wuhan University of Science and Technology , Wuhan 430081 , China
| | - Fen Guo
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials , School of Chemistry and Chemical Engineering , Wuhan University of Science and Technology , Wuhan 430081 , China
| | - Chuang Han
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , USA
| |
Collapse
|
16
|
Zhang D, Du M, Wang P, Wang H, Shi W, Gao Y, Karuturi S, Catchpole K, Zhang J, Fan F, Shi J, Liu S. Hole‐Storage Enhanced a‐Si Photocathodes for Efficient Hydrogen Production. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Doudou Zhang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian National Laboratory for Clean Energy Dalian 116023 China
- School of Materials Science and Engineering Guangxi Key Laboratory of Information Materials Guilin University of Electronic Technology Guilin 541004 P. R. China
- Research School of Electrical, Energy and Materials Engineering The Australian National University Canberra 2601 Australia
| | - Minyong Du
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian National Laboratory for Clean Energy Dalian 116023 China
| | - Pengpeng Wang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian National Laboratory for Clean Energy Dalian 116023 China
| | - Hui Wang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian National Laboratory for Clean Energy Dalian 116023 China
| | - Wenwen Shi
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian National Laboratory for Clean Energy Dalian 116023 China
| | - Yuying Gao
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian National Laboratory for Clean Energy Dalian 116023 China
| | - Siva Karuturi
- Research School of Electrical, Energy and Materials Engineering The Australian National University Canberra 2601 Australia
| | - Kylie Catchpole
- Research School of Electrical, Energy and Materials Engineering The Australian National University Canberra 2601 Australia
| | - Jian Zhang
- School of Materials Science and Engineering Guangxi Key Laboratory of Information Materials Guilin University of Electronic Technology Guilin 541004 P. R. China
| | - Fengtao Fan
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian National Laboratory for Clean Energy Dalian 116023 China
| | - Jingying Shi
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian National Laboratory for Clean Energy Dalian 116023 China
| | - Shengzhong Liu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian National Laboratory for Clean Energy Dalian 116023 China
| |
Collapse
|
17
|
Zhang D, Du M, Wang P, Wang H, Shi W, Gao Y, Karuturi S, Catchpole K, Zhang J, Fan F, Shi J, Liu S. Hole-Storage Enhanced a-Si Photocathodes for Efficient Hydrogen Production. Angew Chem Int Ed Engl 2021; 60:11966-11972. [PMID: 33590572 DOI: 10.1002/anie.202100078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 11/05/2022]
Abstract
Ferrihydrite (Fh) has been demonstrated as an effective interfacial layer for photoanodes to achieve outstanding photoelectrochemical (PEC) performance for water oxidation reaction owing to its unique hole-storage function. However, it is unknown whether such a hole-storage layer can be used to construct highly efficient photocathodes for hydrogen evolution reaction (HER). In this work, we report Fh interfacial engineering of amorphous silicon photocathode (with nickel as HER cocatalyst) achieving a photocurrent density of 15.6 mA cm-2 at 0 V vs. the reversible hydrogen electrode and a half-cell energy conversion efficiency of 4.08 % in alkaline solution, outperforming most of reported a-Si based photocathodes including multi-junction configurations integrated with noble metal cocatalysts in acid solution. Besides, the photocurrent density is maintained above 14 mA cm-2 for 175 min with 100 % Faradaic efficiency for HER in alkaline solution. Our results demonstrate a feasible approach to construct efficient photocathodes via the application of a hole-storage layer.
Collapse
Affiliation(s)
- Doudou Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China.,School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P. R. China.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, 2601, Australia
| | - Minyong Du
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Pengpeng Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Hui Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Wenwen Shi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Yuying Gao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Siva Karuturi
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, 2601, Australia
| | - Kylie Catchpole
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, 2601, Australia
| | - Jian Zhang
- School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Jingying Shi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Shengzhong Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| |
Collapse
|